First Principle Calculations for Silver Halides AgBr, AgCl, and AgF
Abstract
Density functional theory (DFT) coupled with ) method are carried out to calculate the electronic structures of AgX (X; Br, Cl, and F). The effect of hybridizing between 4d orbital of Ag element and the p orbitals of the X in the valence band plays a very important role in the total density of states configuration. The electronic structure has been studied and all results were compared with the experimental and theoretical values. The importance of this work is that there is insufficient studies of silver halides corresponding the great importance of these compounds. Almost all the results were consistent with the previous studies mentioned here. We found the band gap of AgX to be 2.343 eV, 2.553 eV, and 1.677 eV for AgBr, AgCl, and AgF respectively which are in good agreement with the experimental results.
Downloads
References
Bassani, F., Knox, R.S. and Fowler, W.B., 1965. Band structure and electronic properties of AgCl and AgBr, Physical Review Journals Archive, 137, pp.1217-1224.
Becke, A.D., 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, p.3098.
Calzaferri, G., Brühwiler, D., Glaus, S., Schürch, D., Currao, A. and Leiggener, C., 2001. Quantum-sized silver, silver chloride and silver sulfide clusters. Quantum-sized silver, silver chloride and silver sulfide clusters, Journal of Imaging Science and Technology, 45, pp.331-339.
Carlos, F., Nogueira, F. and Marques, M.A.L., 2003. A Primer in Density Functional Theory, Springer, Heidelberg Changhua, A., Shutao, W., Yugang, S., Qinhui, Z., Jun, Z., Chenyu, W., and Jiye, F., 2016. Plasmonic silver incorporated silver halides for efficient photochatalysts. Journal of Materials Chemistry A, 4(12), pp.4336-4352.
Glaus, S. and Calzaferri, G., 2003. The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study. Photochemical and Photobiological Sciences, 2, pp.398-401.
Glaus, S. and Galzaferri. G., 1999. Silver chloride clusters and surface states. The Journal of Physical Chemistry B, 103, pp.5622-5630.
Gordienko, A.B., Zhuravlev, Y.N. and Poplavnoi, A.S., 1991. Electronic structure of AgCl, AgBr, and AgI. Physica Status Solidi (b), 168, pp.149-156.
Hohenberg, P. and Kohn, W., 1964, Inhomogeneous electron gas. Physical Review Journals Archive, 136, p.B864.
James, T.H., 1977. The Theory of Photographic Process, 4th ed. Macmillan, NewYork. Jonathan, S., Mario, R. Marques, S.B. and Marques, A.A.L., 2019. Recent advances and applications of machine learning in solid state materials science. Computational Materials, 5, p.83.
Kirchhoff, F., Honender, J.M. and Gilan, M.J., 1994. Energetic and electronic structure of silver chloride. Physical Review B, 49, p.17420.
Kohn, W. and Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133.
Lanz, M., Schürch, D. and Calzaferri, G. 1999. Photocatalytic oxidation of water to O2 on AgCl-coated electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 120, pp.105-117.
Masahiro, K., Omata, H., Ishihara, M., Hanslin, S.O., Mizumaki, M., Kawamura, N., Osawa, H., Suzuki, M., Mio, K., Sekiguchi, H. and Sasaki, Y.C., 2021. Tilting and rotational motion of silver halide crystal with diffracted x-ray blinking. Scientific Reports, 11, p.4097.
Milton, A. and Stegun, I.A., 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, DC. Onwuagba, B.N., 1996. The electronics structure of AgF, AgCl, and AgBr. Solid State Communications, 97(4), pp.267-271.
Harrison, P., 2011, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, third edition, John wiley & sons, LTD. Perdew, J.P., Burke, K. and Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77, p.3805.
Prachi, T., Pankaj, R., Paradeep, S., Abhinandan, K., Aftab, A., Abdullah, M., 2020. Exploring recent advances in silver halides and graphitic carbon nitridebased photocatalyst for energy and environmental applications. The Arabian Journal of Chemistry, 13(11), pp.8271-8300.
Sasithac, A., Kowsalya, D., and Yugang, S., 2017. Ternary silver halides nanocrystals. Accounts of Chemical Research, 50(7), pp.1754-1761.
Scop, P.M., 1965. Band structure of silver chloride and silver bromide. Physical Review Journals Archive, 139, pp.934-940.
Stephan, G. and Calzaferri, G., 2003. The band structures of the silver halides AgF, AgCl, and AgBr, A comparative study. Photochemical and Photobiological Sciences, 2, pp.398-401.
Tejada, J., Shevchik, N.J., Braun, W., Goldmann, A. and Cardona, M., 1975. Valence bands of AgCl and AgBr: UV photoemission and theory. Physical Review B, 12, p.1557.
Victora, R.H., 1997. Calculated electronic structure of silver halide crystals. Physical Review B, 56(8), 4417.
Wolan, J.T. and Hoflund, G.B., 1998. Surface characterization study of AgF and AgF2 powder using XPS and ISS. Applied Surface Science, 125, pp.251-258.
Copyright (c) 2021 Akram H. Taha
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who choose to publish their work with Aro agree to the following terms:
-
Authors retain the copyright to their work and grant the journal the right of first publication. The work is simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0]. This license allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors have the freedom to enter into separate agreements for the non-exclusive distribution of the journal's published version of the work. This includes options such as posting it to an institutional repository or publishing it in a book, as long as proper acknowledgement is given to its initial publication in this journal.
-
Authors are encouraged to share and post their work online, including in institutional repositories or on their personal websites, both prior to and during the submission process. This practice can lead to productive exchanges and increase the visibility and citation of the published work.
By agreeing to these terms, authors acknowledge the importance of open access and the benefits it brings to the scholarly community.