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Abstract—Detecting fake speech in voice-based authentication 
systems is crucial for reliability. Traditional methods often struggle 
because they cannot handle the complex patterns over time. Our 
study introduces an advanced approach using deep learning, 
specifically long short-term memory (LSTM) and bidirectional 
LSTM (BiLSTM) models, tailored for identifying fake speech 
based on its temporal characteristics. We use speech signals 
with cepstral features such as mel-frequency cepstral coefficients 
(MFCC), constant Q cepstral coefficients, and open-source speech 
and music interpretation by large-space extraction to directly 
learn these patterns. Testing on the ASVspoof 2019 Logical Access 
dataset, we focus on metrics such as min-tDCF, equal error rate, 
recall, precision, and F1-score. Our results show that LSTM and 
BiLSTM models significantly enhance the reliability of spoof speech 
detection systems.

Index Terms – Bidirectional long short-term memory, 
Constant Q cepstral coefficients, Countermeasure 
spoofing, Long short-term memory, Mel-frequency 
cepstral coefficients, Open-source speech and music 
interpretation by large-space extraction.

I. Introduction
Automatic Speaker Verification (ASV) (Bai and Zhang, 
2021) is a popular biometric method that identifies a person 
by analyzing their recorded speech. The main idea is that 
everyone has a unique voice, similar to unique faces, irises, 
or fingerprints (Kamble et al., 2020).

Spoofing methods, such as voice conversion (VC), replay 
attacks, impersonation, and artificial speech and can trick 
devices that use ASV (Wang et al., 2020) (Adiban Sameti and 

Shehnepoor, 2020). Impersonation means copying someone’s 
voice to access their account. VC changes the sound of a 
voice without changing what is said, whereas text-to-speech 
(TTS) creates fake speech. Replay attacks play recordings 
of a real voice to trick the system (Kinnunen et al., 2020). 
Combining these spoofing countermeasures with ASV makes 
the system more resistant to attacks (Wu et al., 2017).

By understanding, the need for effective countermeasures, 
several anti-spoofing challenges have emerged (Wu et al., 
2015) (Kinnunen et al., 2017) (Todisco et al., 2019). To 
effectively detect spoof attacks, it is crucial to extract accurate 
data from speech signals. Choosing effective features is key 
in detecting spoofed speech. Features covering longer time 
spans across many frames are needed to detect these artifacts 
effectively (Tian et al., 2017).

A. Proposed Work Contribution and Organization of the 
Paper

This paper investigates hand-crafted spectro-temporal 
representations, using deep learning and feature extraction, 
for detecting spoofed speech. The paper’s contributions are 
(1) investigating well-known features with sequence-based 
representations, (2) suggesting deep learning with long short-
term memory (LSTM) and bidirectional long short-term 
memory (BiLSTM) for spoofed speech detection instead 
of traditional methods, and (3) proposing a new feature by 
converting open-source speech and music interpretation 
by large-space extraction’s (OpenSMILE’s) 88 global 
representations into time series features.

The paper is organized as follows: Section 2 describes 
previous related work. Section 3 explains the background 
of ASVspoof 2019 for logical access, the types of attacks in 
the ASVspoof 2019 dataset, the feature extraction process, 
and the model used. Section 4 details the deep learning 
methodology. Sections 5 and 6 discuss the experimental 
setup, analyze results, and compare the proposed approach 
to current systems. The conclusion and directions for future 
research are covered in Section 7.
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II. Literature Review
Spoofing speech detection has become increasingly 

important because of the growth in deceiving activities such 
as voice impersonation, conversion, synthetic speech attacks, 
and deepfake technology. To resolve this, researchers have 
investigated numerous methods for distinguishing genuine 
speech from fake speech (Nautsch et al., 2021).

A typical method for spoofing speech detection is 
extracting the acoustic feature from the speech signal 
(Rahmeni, Aicha, and Ayed, 2020) (Dave, 2013). The 
primary focus of early research was on conventional acoustic 
characteristics, however, the development of machine/deep 
learning approaches encouraged the researchers to focus on 
more complex to enhance the deep learning-based features/
models (Jiang et al., 2009) (Kumari and Jayanna, 2015) 
(Ahmed et al., 2022).

Recent studies have used deep learning architectures such 
as recurrent neural networks (RNNs) and convolutional 
neural networks (CNN) to extract discriminative features 
from speech signals. A 1D-CNN+LSTM approach (Ahmed 
et al., 2022) was proposed on the ASVspoof 2019 dataset, 
achieving an equal error rate (EER) of 31.9%. A hybrid data 
augmentation technique using the synthetic minority over-
sampling technique was implemented (Chakravarty and Dua, 
2023) by employing an LSTM and support vector machine 
classifier, achieving EERs of 5.1% and 7.4% with 93% and 
92% accuracy, respectively. A similar approach was used 
(Zhou et al., 2022) for the ASVspoof 2019 PA subset, using 
GTCC and mel-frequency cepstral coefficients (MFCC) 
features. The BiLSTM network achieved an accuracy of 97% 
and an EER of 2.97% through consistent implementation 
across multiple approaches.

Researchers have enhanced the accuracy of identifying 
fake speech by combining multiple acoustic features. As 
suggested by Karo, Yeredor, and Lapidot, 2022, they applied 
new methods based on probability mass function estimation 
to audio waveforms in the ASVspoof 2019 LA subset. 
They focused on two types of filter banks (MFCC and 
GTCC) and used diffusion maps to reduce dimensionality, 
measuring similarity through diffusion distance. Their 
evaluation of this subset achieved an EER of 12.09% for 
males and 12.99% for females. Similarly, Hassan and 
Javed, 2021 proposed an effective synthetic speech detector 
by combining spectral features including MFCC, GTCC, 
spectral flux, and spectral centroid. Their model, trained on 
15,981 samples and tested on 14,161 samples, achieved an 
impressive EER of 3.05%.

Moreover, researchers have explored domain-specific 
knowledge, such as adopting different speech representations 
of the front-end model and the fusion of different temporal 
segments. Another research (Wei, Pang and Kuo, 2024) 
proposed a Green ASVSpoof detector based on pre-trained 
speech representations by extracting the probability vectors, 
probability histograms, and probability patterns of fusion of 
three XGBoost classification stages and achieved 1.82% EER 
for the 2019 LA evaluation subset and lead to lower model 
sizes and inference complexity per input speech sample.

In addition to employing acoustic and deep features, 
various methods and platforms exist for extracting features 
from speech signals. For instance, according to Devesh et al., 
2022, an 88-dimensional OpenSMILE feature set was applied 
to LJ speech, CMU-arctic, and LibreTTS datasets.

A. Research Gap
Recent reviews of ASV and countermeasure systems 

highlight the ongoing need for improvement in this critical 
area. Both ASV and CM systems traditionally use acoustic 
and deep features for extracting features. Deep features (non-
handcrafted features) are extracted from the multiple layers of 
a neural network. These features, which do not have explicit, 
pre-defined meanings, are learned during the training process. 
Neural networks capture complex patterns and hierarchical 
structures in the data through these deep features. However, 
few studies explore the effects of MFCC and constant Q 
cepstral coefficient (CQCC) features, especially in their time-
series formats such as separate, concatenated, and fused 
forms. In addition, there has been limited focus in related 
research on time-series representations of speech, possibly 
due to the complexity of handling large amounts of data. 
Furthermore, as far as we know, the application of time-
series OpenSMILE features with different time intervals has 
not been explored before.

III. Background
A. ASVspoof 2019 Logical Access Subset
The ASVspoof 2019 project’s logical access subset is part 

of its third version. It includes fake speech made by TTS or 
VC models. This subset contains 12,483 real utterances and 
108,978 fake ones created by 19 different methods, such 
as 11 TTS techniques, 5 VC techniques, and three hybrid 
approaches. ASVspoof 2019 covers both logical access and 
physical access scenarios with a wider variety of spoofing 
methods and a larger dataset.

The ASVspoof 2019 logical access subset is part of the 
third version of the ASVspoof project. Spoofed samples are 
generated using TTS or VC models. The ASVspoof 2019 
LA subset comprises 12,483 bonafide utterances and 108,978 
spoofed utterances. These spoofed utterances are created 
using 19 different algorithms, including 11 TTS techniques, 
five VC techniques, and three hybrid approaches (as detailed 
in Table I).

The logical access subset of the ASVspoof 2019 dataset 
is divided into three subsets: training, development, and 
evaluation. The training subset is used to train spoofing 
countermeasures, whereas the development subset is used 

TABLE I
A Summary of the ASVspoof 2019 Logical Access Dataset

ASVspoof 2019 LA Subset Speaker Utterance

Male Female Bonafide Spoof
Train 8 12 2,580 22,800
Development 8 12 2,548 22,296
Evaluation 30 30 7,355 63,882
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to optimize these countermeasures. Finally, the evaluation 
subset assesses the performance of the developed models.

The spoofing algorithms that are present in the evaluation 
data are not present in the training and development subsets. 
Out of 19 different spoofing algorithms, six (A01–A06) of 
them have been used for generating the utterance of the train 
and development subset whereas the remaining 13 (A07–A19) 
have been used for generating the evaluation subset.

B. MFCC, CQCC, and OpenSMILE Feature
MFCC are crucial features widely used in voice signal 

processing. The process of extracting MFCC involves 
dividing the signal into frames, calculating the energy 
spectrum, applying Mel filter banks, computing logarithms 
for each filter bank output, and performing discrete cosine 
transform (Novoselov et al., 2016). The computation and 
extraction steps are depicted in Fig. 1.

Short-term spectral features such as MFCC are commonly 
used in speech recognition systems (Abdul and Al-Talabani, 
2022). The higher frequency filters in the Mel-scale filter 
bank used by MFCC have wider bandwidths compared to 
lower frequency filters, but they maintain the same temporal 
resolutions (Patel and Patil, 2015).

Studies have shown that CQCC features perform well in 
utterance and speaker verification (Todisco, Delgado and 
Evans, 2016). CQCC extraction involves using the constant-Q 
transform (CQT), which provides enhanced frequency 
resolution for lower frequencies and improved temporal 
resolution for higher frequencies (Todisco et al., 2019).

Fig. 2 illustrates how CQCC features are extracted. 
According to Todisco, Delgado, and Evans (2016), studies 
have used three different dimensions of CQCC features: 
12, 19, and 29, all including C0. In the context of CQCC 
features, C0 represents the average energy across frequency 
bands after applying the CQT to the signal. The initial choice 
of 12 and 19 dimensions is based on their common use in 

speech and speaker recognition. The 29 dimension aims 
to explore whether higher coefficients provide additional 
information useful for detecting spoofing.

In the opposite, Yang, Das and Li, 2020, claimed that the 
CQT feature, more precisely the log power spectrum of the 
CQT, does not have the phase information of the signal. To 
further generate the CQCC, even more information will be 
discarded. From a hand-crafted feature engineering point of 
view, a good feature must capture discriminative information 
between classes and must also be compact in size.

Moreover, there is another feature that has received 
relatively little attention in the area of research for spoof 
detection, which is the OpenSMILE feature. Open Speech 
and Music Interpretation by Large Scale (OpenSMILE) 
(Eyben, Wöllmer and Schuller, 2010) is an innovative 
open-source tool designed for extracting features in speech 
processing and music information retrieval. Its main 
purpose is to facilitate audio feature extraction. OpenSMILE 
offers a straightforward, scriptable console application 
where modular feature extraction components can be 
easily configured, allowing researchers to take advantage 
of features across various domains. The OpenSMILE1 
features are an open-source toolkit that extracts essential 
speech features. OpenSMILE features include three 
standard support features – ComParE 2016, GeMAPS, and 
eGeMAPS. ComParE 2016 (Eyben, Wöllmer and Schuller, 
2010) is the largest in terms of size and each feature can be 
extracted in the low-level descriptor (LLD) or functional. 
The contribution of every feature including MFCC, CQCC, 
and OpenSMILE has been investigated in detecting fake 
speech, this motivated us to use the eGeMAPSv02 (Eyben 
et al., 2016) contains 88 functional parameters. The LLD 
contains 25 feature-level parameters for each 20 ms and 
with a hop length of 10 ms.

1. http://www.audeering.github.io/opensmile

Fig. 1. Mel-frequency cepstral coefficient feature extraction process.

Fig. 2. Constant Q cepstral coefficients feature extraction process.
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C. LSTM and BiLSTM
LSTM is a specialized form of RNN widely utilized 

in natural language processing and time series prediction 
tasks. Unlike a standard LSTM, where the input flows 
only in one direction, a BiLSTM processes input in both 
forward and backward directions, allowing it to capture 
important contextual information from both past and future 
states. Fig. 3 illustrates the cell state of an LSTM model, 
highlighting its internal mechanisms.

The cell state is a crucial component in LSTM networks, 
responsible for maintaining long-term dependencies and 
preserving relevant information across extended sequences. 
Serving as the memory within the LSTM unit, it plays a 
vital role in capturing and retaining data from previous time 
steps (illustrated in Fig. 4, left). The cell state is updated and 
modified through three primary gates: the forget gate, the 
input gate, and the output gate. These gates work together 
to determine which information should be remembered or 
discarded, ensuring the LSTM effectively manages data 
throughout the sequence.

LSTM is specifically designed to update information across 
different time steps, overcoming the limitations of traditional 
RNNs. Unlike RNNs, LSTMs excel at capturing long-term 
dependencies in sequential data (as shown in Fig. 4, left). 
This capability makes LSTMs highly effective for time series 
prediction and other tasks involving sequential data in deep 
learning architectures. The BiLSTM network, illustrated in 
Fig. 4, right, enhances this functionality by processing data 
in both forward and backward directions, thereby integrating 
information from both past and future time steps for more 
comprehensive modeling.

IV. Deep Learning Approach Methodology
This study primarily aimed to create a countermeasure 

to work alongside the proposed ASV system, which was 
included in the ASVspoof 2019 challenge. In this section, 
the architecture of the proposed CM system is presented. 
Regarding the feature extraction from the speech signal, the 
paper adopts the use of the CQCC, MFCC, and OpenSMILE 
features toolkit which will be described in section 4.1. At 
the classifier level, LSTM (Hochreiter and Schmidhuber, 
1997) and BiLSTM are utilized to evaluate the data of the 
ASVspoof 2019 LA subset to build different CM systems. 
Fig. 5, shows an illustration of the proposed CM block 
diagram. The suggested model operated in sequence-based 
phases and each phase had several processes carrying out 
distinct tasks.

As illustrated in Fig. 5, the proposed method comprises 
several tasks of the deep learning model. The model is 
trained using the ASVspoof 2019 logical access subset. The 
main components of a spoofing detection system are feature 
extraction and decision-making modules. In front-end features 
extraction, time series-based features such as (MFCC, CQCC, 
and OpenSMILE) have been used, For the back-end speech 
spoofing countermeasure module, we explore the LSTM and 
BiLSTM classifiers for training the model, and the posterior 
probability is used for decision making. In our model the 
structure is a sequence-to-label classification, we have created 
a sequence input layer, followed by an LSTM layer, then a 
fully connected layer, and a Softmax layer at the end.

A. Feature Extraction
In this phase, we will discuss the used features and the 

extraction process. Feature extraction involves transforming 
raw speech data into a set of attributes or characteristics that 
can be used for analysis. This process includes selecting 
and transforming data to create informative, non-repetitive 
features that enhance model performance.
MFCC features

Feature extraction aims to provide a clear representation 
of the vocal tract based on its response characteristics. By 
leveraging the capabilities of the human auditory system 
(HAS), MFCC can accurately capture key parameters of 
speech signals across different voice transformation scenarios.

Fig. 4. The structure of long short-term memory (left) and bidirectional long short-term memory (right).

Fig. 3. Cell state used in long short-term memory.
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Fig. 5. The structure of the main approach of the proposed countermeasure.

In this study, the Librosa (McFee et al., 2015) library was 
used to extract a sequence of 12-dimensional MFCC feature 
vectors with log energy for each spoken sentence. MFCC 
and log power magnitude spectra (LPMSs) are obtained 
using a pre-emphasis with a coefficient of 0.97. Each frame 
is acquired by applying a 30 ms Hamming window with a 
step size of 15 ms.
CQCC features

CQCC is derived from CQT, which creates a time-
frequency representation for speaker recognition and spoofing 
detection (Todisco, Delgado and Evans, 2016). CQCCs are 
adept at capturing distinct spectral features across various 
frequency levels, making them effective in distinguishing 
between different types of audio signals (Todisco, Delgado 
and Evans, 2017).

The CQCC feature was extracted with a time step of 12 
ms, covering nine octaves with 96 bins per octave. Each 
feature vector includes 19 cepstral coefficients, including 
the 0th coefficient, along with their delta and double delta 
coefficients. Hence, each feature vector is 60-dimensional. 
In addition, we have extracted another CQCC feature set 
with different parameters. This new feature is extracted with 
nine octaves with 171 bins per octave and 12 static cepstral 
coefficients including 0th coefficient.
OpenSMILE features

The OpenSMILE features are an open-source toolkit that 
enables to the extraction of essential speech features such as 
auditory formants spectral, signal energy, MFCC, Shimmer, 
Jitter, linear predictive coding, pulse code modulation, and 
line spectral pairs. While the ComParE 2016 and GeMAPS 
can be used as a global representation of speech samples 
with 6373 and 88 features, respectively, we have used 
eGeMAPSv02 with LLDs as a feature set with 25 time-step 
parameters for each 20 ms and with a hop length of 10 ms.

Using the OpenSMILE feature, the global representation 
of each speech sample with eGeMAPSv02 which contains 
88 functional parameters has been extracted. For a new 
time, series-based feature we have created a new feature by 

splitting the speech signal into different frames and extracting 
the functional features for each frame. For this feature set, 
the hamming window has a size of 100 ms, and a step size 
of 40 ms is applied to extract the features.

B. Combined Feature
Combining features in the context of deep learning and 

data processing is the process of integrating multiple types 
or sets of features to create a more comprehensive and 
informative representation of the data. We have concatenated 
MFCC with CQCC to improve the accuracy and robustness 
of the system by providing diverse perspectives on the 
audio signal’s characteristics. In this paper, we have used 
a combined feature set that consists of 13 MFCC and 13 
CQCC to construct a new feature set with 26 dimensions of 
time steps whereas the length of utterance remains the same.

V. Experimental Setup
The implementation of the proposed deep learning 

approaches is carried out using Python version 3.9.13. We 
evaluated our models on the ASVspoof 2019 evaluation part 
for the logical access subset.

The proposed countermeasure models (LSTM and 
BiLSTM) have been implemented using MATLAB 2023b 
and Python on the Windows 10 operating system with 64GB 
of RAM and Processor Intel(R) Core (TM) 3.6GHz 16 CPUs 
and a Single GPU with 10 GB of size. Data extraction and 
preprocessing have been conducted using Jupyter Notebook 
within the Anaconda environment.

A. LSTM and BiLSTM Parameters Tuned
We used 1000 hidden states across all feature types 

in both models, even though most speech samples have 
fewer than 1000 time steps per sample. Our approach 
included training on the ASVspoof 2019 Train subset 
and testing on the development subset. We tested various 
layer numbers and configurations to optimize model 
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performance. Each model was trained for 100 epochs with 
a fixed learning rate of 0.001 and a batch size of 128 for 
efficient improvement.

B. Experiments
Table II provides a detailed overview of the feature sets 

used in our investigation, including the number of features 
linked to each time step for LSTM and BiLSTM models. 
This systematic approach enables us to explore the efficiency 
of these models in extracting the artifact within the different 
types of features.

During the training of the models, the BiLSTM was 
slower than the LSTM model. This observation suggests 
that BiLSTM models can capture additional features in the 
data. In this regard, Siami-Namini, Tavakoli and Namin, 
2019, recommended using BiLSTM instead of LSTM for 
forecasting problems in time series analysis.

C. Fusion of Models
Fusion can occur at various levels, including feature-

level fusion, decision-level fusion, or model-level fusion, 
depending on the specific application and context. In this set 
of experiments, model-level fusion, also known as late fusion, 
was used by combining the results from different models 
through averaging their outputs. This method allows for the 
creation of fusion models that use either the same classifier 
with different features or the same features with different 
classifiers to improve overall performance. Different model-
level fusions were conducted, selecting the best-performing 
models based on various evaluation criteria to achieve more 
robust and effective results.

VI. Results and Discussion
In this section, we present the findings of our experimental 

analysis and engage in a comprehensive discussion of the 
observed results. We begin by summarizing the outcomes of 
our model implementations and highlighting key performance 
metrics.

A. Feature-Level Fusion
Feature-level fusion is used for merging different types 

of features to enhance the performance of models. By 
combining multiple feature sets, enables more accurate 
and robust predictions and leveraging the strengths of each 
feature set.

LSTM
With the LSTM model, we conducted the experiments 

using six different types of time series-based features, without 
employing any data augmentation process. The results of our 
analysis, as detailed in Table III, reveal significant insights into 
the performance of the LSTM models across various feature 
sets. Notably, the LSTM model with CQCC_60 and OS_25 
features outperformed other features in all evaluation metrics.

As shown in Table III, the model with the CQCC with 
60 dimensions of time step feature obtained the best EER 
(6.15%), Min-tDCF (0.1917), and Recall (99.91%) among 
other types of features. From the OpenSMILE time series-
based feature (OS25 and OS88), we can conclude that the 
higher number of time step features does not guarantee to 
have a better result.

In experiment 5, with OS (25), an outstanding result 
was achieved in terms of accuracy, precision, and f1-score 
whereas the OS (25) has been extracted in the LLD of the 
OpenSMILE feature2. Furthermore, in experiment 6, the 
OpenSMILE with 88 time series-based features did not 
perform better than experiment 5 with OpenSMILE 25.
BiLSTM

The result of the same features has been used with the 
BiLSTM model and the result is shown in Table IV. As we 
can see, in experiment 9, the 13 MFCCs time series-based 
features outperform all other features. In addition, this feature 
achieved the best result in terms of accuracy (93.05%).

The BiLSTM models outperformed their unidirectional 
LSTM in terms of accuracy, precision, recall, and f1-score 
whereas on the other hand, the LSTM model obtained 
outstanding results for EER (6.15%) and min-tDCF (0.1917). 
While the BiLSTM model is capable of capturing complex 
temporal dependencies as shown in Table IV, these findings 
underscore the enhanced capability of BiLSTM models in 
leveraging bidirectional context (Table IV).

Experiments 4 and 10, where a combination of CQCC and 
MFCC is performed, did not lead to improving the result of 
both LSTM and BiLSTM models.

B. Fusion Models Result
In this section, the fusion models focus on combining the 

best-performing LSTM and/or BiLSTM experiments. A total 
of 12 experiments were carried out 6 for each model with the 
top performers identified using various evaluation metrics. 
Initially, the two best experiments from both LSTM and 
BiLSTM models were selected, followed by the selection of 
the best metrics between the two. Eventually, the selection 
was expanded to include the top three and four experiments 
for each model. To ensure a comprehensive analysis, 
experiments were selected from Tables III and IV. An 
averaging technique was applied to merge the results from 
the selected experiments in these fusion models.

A fusion model of the top two experiments, 1 and 9, 
produced the best results (Table V) in terms of EER and 

2.  https://audeering.github.io/opensmile-python/usage.html#process-signal

TABLE II
Experimental Setup Time Series-Based Feature

Feature ID Time series-based feature Dimension
CQCC_60 CQCC 60
CQCC_13 CQCC 13
MFCC_13 MFCC 13
MFCC_CQCC_26 MFCC+CQCC 26
OS_25 OpenSMILE 25
OS_88 OpenSMILE 88
CQCC: Constant q cepstral coefficients, MFCC: Mel-frequency cepstral coefficients
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TABLE III
Long Short-Term Memory Results with Different Types of Features

Experiment ID Feature Equal error rate % Min-tDCF Accuracy % Precision % Recall % F1-score %
1 CQCC (60) 6.15 0.1917 80.51 78.33 99.91 87.82
2 CQCC (13) 13.06 0.4476 58.60 54.10 99.51 70.09
3 MFCC (13) 9.35 0.2456 81.60 79.63 99.81 88.59
4 MFCC_CQCC (26) 11.52 0.3475 58.22 53.47 99.88 69.66
5 OS (25) 8.25 0.2292 88.55 87.50 99.69 93.20
6 OS (88) 9.80 0.2344 86.74 85.39 99.78 92.03
CQCC: Constant q cepstral coefficients, MFCC: Mel-frequency cepstral coefficients

TABLE V
Fusion Model Result of Combining Different Types of Experiments

Fusion models Equal error rate % Min-tDCF Accuracy % Precision % Recall % F1-score %
1,4 4.28 0.17766 85.66 84.05 99.94 91.31
1,5 5.54 0.19461 88.32 87.03 99.93 93.03
1,9 4.06 0.15862 91.64 90.75 99.92 95.11
1,12 5.88 0.19494 88.45 87.20 99.91 93.12
5,6 8.26 0.21688 88.00 86.78 99.81 92.84
5,9 5.98 0.18099 92.04 91.32 99.79 95.37
7,12 8.71 0.21638 87.33 85.99 99.86 92.41
9.11 6.25 0.19408 92.21 91.60 99.69 95.47
9.12 6.07 0.18543 91.66 90.90 99.78 95.13
1,3,4 4.73 0.18489 77.03 74.41 99.97 85.31
1,3,5 4.86 0.17893 87.01 85.56 99.95 92.19
1,5,6 6.06 0.19496 89.08 87.97 99.84 95.53
3,5,6 7.39 0.20877 87.46 86.13 99.87 92.49
7,9,12 6.02 0.19064 88.65 87.45 99.88 93.25
9,11,12 6.11 0.20110 89.73 88.77 99.75 93.94
1,3,5,6 5.18 0.19382 87.53 86.14 99.95 92.53
7,9,11,12 6.02 0.19872 88.99 87.83 99.87 93.46
1,3,5,6,7,8,11,12 5.87 0.19818 87.71 86.34 99.93 92.64

TABLE IV
BiLSTM Results with Different Types of Features and Different Time Step

Experiment ID Feature Equal error rate % Min-tDCF Accuracy % Precision % Recall % F1-score %
7 CQCC (60) 9.74 0.3090 81.87 80.13 99.56 88.80
8 CQCC (13) 21.46 0.6325 62.03 58.60 98.42 73.46
9 MFCC (13) 6.29 0.1937 93.05 92.71 99.50 95.99
10 MFCC_CQCC (26) 11.02 0.3748 82.25 80.90 99.14 89.10
11 OS (25) 8.93 0.2380 89.39 88.62 99.49 93.74
12 OS (88) 8.33 0.2333 87.99 86.89 99.68 92.84
CQCC: Constant q cepstral coefficients, MFCC: Mel-frequency cepstral coefficients

min-tDCF. The obtained results are 0.15862 for min-tDCF 
and 4.06% of EER. Consequently, in experiments 9 and 11, 
the best fusion model improved its accuracy and precision to 
92.21% and 91.60%, respectively.

Based on the findings in Table V, the fusion model that 
combines CQCC and MFCC features (specifically fusion [1,4] 
and fusion [1,9]) shows that using the fusion of these features 
results in improved performance, particularly by achieving 
lower EER and min-tDCF values. It can also be inferred that 
combining different types of features and classifiers enhances 
the model’s overall performance. However, unlike the EER, 
the fusion models did not outperform the single model in 
terms of accuracy (93.05%) and precision (95.99%) when 
compared to the single model in experiment 9.

C. Attack-Based Analysis Result
The ASVspoof 2019 logical access dataset comprises 13 

unseen attacks within the evaluation subset. The attack-based 
analysis section aims to identify the attack type with the 
most noticeable effect on the overall result. Within the LA 
subset, attack types range from A07 to A19. Each attack type 
consists of a total of 4914 samples, whereas 7355 samples 
are categorized as bonafide.

Fig. 6 offers insights into the performance of both the 
LSTM (left) and BiLSTM (right) models utilizing CQCC 
(60) in detecting spoofs created by various attack types 
(including A07, A09, A16, and A19) within the LA subset, 
showcasing the percentage of missed samples for each attack 
type.
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The LSTM model demonstrates superior performance 
in detecting bonafide, A07, A09, A12, A16, and A19. 
In contrast, the BiLSTM model surpasses the LSTM in 
identifying attacks A10, A11, A14, and A15, yielding better 
results. However, it also struggles with misclassifications for 
attacks A13, A17, and A18.

Fig. 7 shows that utilizing CQCC with 13 dimensions did 
not yield improved results when compared to using CQCC 
with 60 dimensions. Despite the lower dimensionality, the 
performance of both LSTM and BiLSTM models did not 
significantly improve. Interestingly, among the attacks, only 
A07, A16, and A19 were consistently identified correctly by 
both models, irrespective of the dimensionality of the CQCC 
feature. This suggests that while reducing the dimensionality 
of the feature may offer computational advantages, it does 
not necessarily enhance the models’ ability to accurately 
classify certain attack types.

Fig. 7. Miss classification of samples for each attack type 
of constant Q cepstral coefficients feature of 13 dimensions 
with long short-term memory (left) and bidirectional long 
short-term memory (right) models.

Even though the BiLSTM model demonstrated a higher 
misclassification rate of bonafide samples at 3.97%, the 
LSTM model showcased improved performance with a 
lower misclassification rate of 1.27%, as illustrated in Fig. 8. 
Moreover, it is noteworthy that despite this difference, the 
BiLSTM model exhibited superior performance in detecting 
all attack types when utilizing MFCC features, outperforming 
the LSTM models employing the same features. This 
suggests that while the LSTM model may excel in certain 
aspects, such as accurately classifying bonafide samples, the 
BiLSTM model shows promise in overall attack detection 
when leveraging MFCC features.

Fig. 8. Miss classification of samples for each attack type of 
mel-frequency cepstral coefficients feature of 13 dimensions 
with long short-term memory (left) and bidirectional long 
short-term memory (right) model.

In the LSTM model (depicted in Fig. 9), although the 
results differ from those of the BiLSTM model for attack 
types A07 to A16, the misclassification rate of bonafide 
samples is lower with LSTM at 0.53% compared to the 
BiLSTM models.

Fig. 6. Miss classification of samples for each attack type of constant Q cepstral coefficients feature of 60 dimensions with long short-term memory 
(left) and bidirectional long short-term memory (right) models.

Fig. 7. Miss classification of samples for each attack type of constant Q cepstral coefficients feature of 13 dimensions with long short-term memory 
(left) and bidirectional long short-term memory (right) models.
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Fig. 10 shows the misclassification outcomes based 
on attack types using OpenSMILE with 25 time series-
based features. While both the LSTM and BiLSTM models 
demonstrate similar overall performance, they both notably 
enhance the identification of A07, A09, A10, A11, A12, A13, 

A14, A15, and A16 attack types. However, both models 
exhibit a significantly higher rate of misclassification for A18, 
A17, A08, and A19 attacks, as well as bonafide samples.

Fig. 11 illustrates the percentage of misclassified samples 
by both LSTM and BiLSTM models across various attack 

Fig. 10. Miss classification of samples for open-source speech and music interpretation by large-space extraction of 25 dimensions with long short-term 
memory (left) and bidirectional long short-term memory (right) model.

Fig. 8. Miss classification of samples for each attack type of mel-frequency cepstral coefficients feature of 13 dimensions with long short-term memory 
(left) and bidirectional long short-term memory (right) model.

Fig. 9. Miss classification of samples for mel-frequency cepstral coefficients and constant Q cepstral coefficients combined features of 26 dimensions 
with long short-term memory (left) and bidirectional long short-term memory (right) model.
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Fig. 11. Miss classification of samples for open-source speech and music interpretation by large-space extraction of 88 dimensions with long short-term 
memory (left) and bidirectional long short-term memory (right) model.

types, utilizing OpenSMILE features with 88 dimensions. 
Figs. 10 and 11 yield comparable results for OpenSMILE 
features with 25 dimensions and 88 dimensions, respectively. 
Although the misclassification rate for all attack types 
(excluding A17, A18, and A19) remains below 7% for 
both features with LSTM and BiLSTM, challenges arise in 
accurately detecting attacks A17 and A18.

Notably, all models with CQCC, MFCC, and OpenSMILE 
features succeeded in detecting the attack types but 
exhibited higher rates of misclassification for A17 and 
A18. The BiLSTM model had the lowest misclassification 
rate for attack A17 of 11.66% with 13 features of MFCC. 
Subsequently, the BiLSTM model with 13 features of CQCC 
obtained 45.62% with the lowest misclassification rate among 
all other types of features. The findings from Figs. 6-11 lead 
to the conclusion that detecting attack types A17, A18, and 
A19 poses greater difficulty compared to other attack types. 
While the BiLSTM model excels in detecting attacks A17, 
A18, and A19, the LSTM model achieves superior results in 
the term of EER and min-tDCF.

VII. Conclusion
In this paper, an extensive investigation has been conducted 
on the effect of LSTM and BiLSTM model of the ASVspoof 
2019 logical access dataset with a time series-based feature. 
The use of single and fusion versions of features on unseen 
attacks affects the spoof detection model. The investigations 
lead to the conclusion that having a higher number feature 
of time steps cannot guarantee improvement in the model’s 
performance. In addition, the BiLSTM model outperforms 
the LSTM almost in all types of features. This indicates 
the usefulness of the BiLSTM model for time series-based 
features in contributing the spoof detection. Furthermore, 
within the logical access subset, the attacks A17, A18, and 
A19 are more challenging to detect. However, the CQCC 
feature achieved the lowest EER of 6.15% as a single system 
and an EER of 4.06% of the fusion model and the highest 
accuracy among all other features with 93.05% gained with 
the MFCC feature as a single system.
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