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Abstract—Flexible job shop scheduling problem (FJSSP) is 
a complex and challenging problem that plays a crucial role in 
industrial and manufacturing production. FJSSP is an expansion 
of the standard job shop scheduling problem (JSSP). One of 
FJSSP’s objectives that the manufacturing system competing 
for is minimizing the makespan. This paper uses a new nature-
inspired metaheuristic optimization algorithm called the Apiary 
Organizational-Based Optimization algorithm (AOOA) to solve 
the FJSSP. This Algorithm simulates the organizational behavior 
of honeybees inside the apiary and translates their activities and 
vital processes during their lifecycle into phases that can solve 
such NP-hard problems. Two benchmark datasets, Brandimarte 
and Hurink, with 10 MK instances and 24 (edata, rdata, and 
vdata) instances respectively, were used to demonstrate the ability 
of AOOA to solve FJSSP. Moreover, the results of AOOA were 
compared with a set of state-of-the-art algorithms and statistically 
measured using the paired samples t-test and p-value, RPD, and 
group-based superiority statistical analysis to test its performance. 
AOOA outperformed Elitism GA, Enhanced GA, Improved GA, 
and MOGWO in solving all 10 MK instances and HICSA in solving 
9 MK instances out of 10. Moreover, AOOA overcame CS, CS-BNG, 
CS-ILF, CHA, and MCA in solving 24, 12, 12, 23, and 24 instances of 
edata, rdata, and vdata, respectively. AOOA proved its robustness, 
showing promising outcomes.

Index Terms—Apiary Organizational-Based 
Optimization Algorithm, Flexible job shop scheduling, 
Makespan, Metaheuristic nature-inspired.

I. Introduction
In the era of advanced technology and intelligence, time 
is important in manufacturing companies’ competition. 
Production systems’ scheduling is the means to utilize 

available resources and achieve more productivity in less 
time (Meng, et al., 2024). The flexible job shop scheduling 
problem (FJSSP) is an expansion of the standard job shop 
scheduling problem (JSSP) which was debuted by Burcker 
and Schlie in 1990 (Jiang, Yu and Chen, 2023). FJSSP is a 
more difficult nondeterministic polynomial hard (NP-hard) 
problem compared to JSP (Wang, et al., 2024). This is 
because every job operation can be allocated to more 
than one machine and might have variable processing 
times (Song, et al., 2022). FJSSP is a single objective and 
multiobjective based on the optimization problem and the 
aim of the researcher. Reducing the entire processing time, or 
makespan, is one of the most important objective functions.

The FJSS has significant applications and advantages that 
gained the researchers’ attention (Xie, et al., 2019). Some of 
these are: (1) Maximizing resource utilization by allocating 
machines, tools, and labor in the best possible way. 
(2) Minimizing makespan or the total time needed to finish 
all tasks to maximize time efficiency. (3) Meeting client 
delivery criteria and deadlines by effectively scheduling jobs 
and resources. (4) Handling intricate production processes 
because jobs in such industries may involve several 
procedures and call for various resources at different times. 
(5) Scheduling systems are meant to be flexible to adapt to 
unexpected changes such as machine failures, urgent orders, 
and job priority shifting. and (6) Cost reduction via FJSS 
effective scheduling which not only saves cost but also 
enhances competitiveness.

Nature-inspired metaheuristic algorithms are commonly 
used to address NP-hard problems. The Organizational-
Based Optimization Algorithm (AOOA) proposed by 
Al-Sharqi, Al-Obaidi and Al-mamory (2024) is a new nature-
inspired optimization algorithm that takes its steps from 
the organizational behavior of honeybees inside the apiary. 
The contribution of this paper is to employ the concept 
of multiple populations of the apiary to solve the NP-
hard FJSSP and minimize the makespan using the AOOA. 
A benchmark function of thirty-four instances distributed on 
four datasets was used to test AOOA’s ability to solve FJSSP. 
AOOA performance was compared with several well-known 
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metaheuristic algorithms and showed superiority in the 
results of scheduling time reduction (i.e., makespan).

The rest of this research is structured as follows. In Section 
2, the related works are reviewed. Problem definition and an 
elucidating example are discussed in Section 3. Section 4 
explains the AOOA used to solve FJSSP. In Section 5, the 
experimental results of FJSSP are presented and discussed. 
Finally, Section 6 concludes the key points of this work and 
highlights its possible future directions.

II. Related Work
Many metaheuristic algorithms were proposed to solve 

FJSSP. In FJSSP, time is the most crucial factor represented by 
makespan where the objective function is used to minimize it. 
As the proposed algorithm in this present research is inspired 
by the organizational behavior and lifecycle of honeybees in 
the apiary, there is no similar related literature. Accordingly, 
earlier works that were conducted to solve FJSSP are 
outlined here. Previous literature can be categorized into 
five groups based on natural operations; so many types of 
metaheuristic algorithms were proposed (Rajwar, Deep and 
Das, 2023). These algorithms can be categorized based on 
their underlying precept into four essential groups.

The first group can refer to evolutionary algorithms. They 
adopt Charles Darwin’s theory of natural selection or survival 
of the fittest individuals. These algorithms are population-
based such as Genetic Algorithms (GA), Differential Evolution 
(DE), Evolutionary Strategies (ES), Genetic Programming 
(GP), and Gene Expression Programming (GEP).

Xie and Chen, 2018) designed the elitism genetic algorithm 
(ELGA) that was paired with the elitism strategy in external 
memory to define inaccurate time quota as interval grey 
processing time. The proposed algorithm solved FJSSP by 
minimizing the interval grey makespan.

Saving energy through production scheduling is a 
complicated nonlinear programming problem in flexible 
manufacturing systems with resource flexibility and complex 
constraints. This led Dai, et al. (2019) to utilize intelligent 
scheduling techniques to reduce energy consumption. 
Accordingly, a multi-objective optimization model for FJSSP 
with transportation restrictions was developed to decrease 
energy usage and makespan. This was integrated with the 
enhanced genetic algorithm (EHGA) in which the results 
supported decision-makers in flexible manufacturing systems.

In another research study, an improved genetic algorithm 
(IGA) was proposed by (Zhang, et al., 2020). This was 
performed by combining the setup and transportation 
times with the processing time. This was to minimize the 
makespan time, total setup time, and total transportation 
time. The research introduced three various methods to 
improve the quality and diversity of the initial population. 
The crossover was improved by artificial pairing to keep 
reasonable solutions and improve poor solutions effectively. 
Furthermore, a method for adaptive weighting was executed 
to modify mutation probability and search ranges for 
individuals within the population. Standard datasets were 
used to support the efficacy of the proposed methodology.

Another group of metaheuristics is the physical law-based 
algorithms. These algorithms depend on physical phenomena 
such as Simulated Annealing (SA), Tabu Search (TS), Variable 
Neighborhood Search (VNS), and Iterated Local Search 
(ILS) or chemical reactions such as ions motion optimization 
algorithm (IMOA), and thermal exchange optimization 
(TEO). A research study examined the benefits and drawbacks 
of using variable-size batching in manufacturing scheduling 
(Li, et al., 2022). It was noticed that besides the flexibility of 
this technique, it can increase not only energy consumption 
but also scheduling searches. To solve this difficulty, both the 
makespan and the total energy consumption were taken into 
account. Hence, a two-stage multi-objective hybrid algorithm 
(HICSA) was proposed. It combined the simulated annealing 
algorithm (SAA) with the imperialist competitive algorithm 
(ICA). Through various stages, the task sequence optimization 
and lot-splitting approach were enhanced by performing SAA 
with an iterated column generation algorithm. Experiments 
demonstrate the efficiency of the proposed HICSA algorithm.

The third group is miscellaneous algorithms (Rajwar, Deep 
and Das, 2023). These algorithms have influenced various 
theories on human behavior, game theory, mathematical 
theorems, politics, artificial thought, and other subjects. 
Zeidabadi and Dehghani proposed the Puzzle Optimization 
Algorithm (POA) to solve different optimization problems. 
The basic idea of the proposed POA is the mathematical 
simulation of solving a puzzle process (Zeidabadi and 
Dehghani, 2022). They considered that each member of 
the population is a puzzle that can be updated based on the 
guidance of other members and tried to complete its puzzle 
using the pieces suggested by other members.

The fourth group is represented by the nature-inspired and 
swarm intelligence algorithms. The nature-inspired algorithms 
are primarily based on animals’ natural organizational 
behavior or biological processes during the lifecycle. This can 
help them survive and adapt to their environment to achieve 
their task efficiently. Swarm intelligence is a decentralized 
and self-organized system in which individuals perform tasks 
via collective and cooperative behavior. This is a population-
based system that reflects the primary characteristics of a 
swarm system in adaptability (learning by doing), effective 
communication, and knowledge-sharing. Examples of such 
algorithms are Particle Swarm Optimization (PSO), Grey Wolf 
Optimizer (GWO), Firefly Algorithm (FA), Bat Algorithm 
(BA), Cuckoo Search (CS), and Artificial Bee Colony (ABC).

Al-Obaidi and Hussein, (2016) enhanced the Cuckoo 
Search algorithm (CS). The initial modification was made 
on the Best Neighbors Generation (CS-BNG) prediction, 
whereas the second was based on the utilization of Iterative 
Levy Flight (CS-ILF). Adjustments were made to the 
defining characteristics of the CS algorithm to improve 
search performance in the discrete state space. The proposed 
algorithms enhanced the solutions’ quality and convergence 
rate. Several FJSSP benchmark situations were tested to 
evaluate the performance of the enhanced algorithms where 
they outperformed the original cuckoo search method.

To make a balance between production competence and 
environmental leverage, energy-efficient scheduling was 
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prioritized for green manufacturing (Luo, Zhang and Fan, 
2019). The research addressed the multi-objective flexible job 
shop scheduling problem (MOFJSP) by employing variable 
processing speed to minimize makespan and total energy 
usage simultaneously. A multi-objective grey wolf optimization 
(MOGWO) algorithm, which utilizes a three-vector 
chromosomal encoding form, was introduced. The proposed 
algorithm takes into consideration the assignment of machines, 
speeds, and operation order. Extensive numerical experiments 
on thirty-five different scale benchmarks were conducted to 
verify the effectiveness of the suggested algorithm.

Based on the behavior of meerkats in the Kalahari Desert, 
Sadiq Al-Obaidi, Abdullah and Ahmed (2018) introduced the 
meerkat clan algorithm (MCA) as a new swarm intelligence 
algorithm. By utilizing meerkat behavior such as sentry, 
foraging, and babysitter, the algorithm partitions solution sets 
and executes operations specifically on the foraging set. It 
was found that the sentry identified the best solution. MCA 
was used in solving FJSSP where the experimental results 
showed better efficiency than the original Cuckoo Search, 
Artificial Fish Search, and Camel Herd algorithms.

Al-Obaidi et al. proposed a new nature-inspired algorithm 
that mimics camel herds’ behavior (Sadiq Al-Obaidi, 
Abdullah and Ahmed, 2017). The role of the leader of 
each herd was considered, which guided the herd to the 
source of food and water depending on humidity value with 
neighboring strategy. FJSSP was undertaken as a case study 
to verify the proposed algorithm, Camel Herds Algorithm 
(CHA) in which the results proved the ability of CHA to find 
the optimal solution in the problem space. Table I summarizes 
the metaheuristic algorithms that tackle the FJSSP.

The Apiary Organizational-Based Optimization algorithm 
(AOOA) is a new nature-inspired algorithm that adopts the 
concept of multiple populations by introducing the apiary 
concept. AOOA simulates the organizational behavior of 
honeybees (the queen, drones, and workers) inside the 
apiary and the biological activities of workers’ bees during 
their lifecycle. In this work, AOOA is employed to solve the 
FJSSP where the concept of multiple populations is utilized 
to minimize the makespan.

III. Problem Definition
FJSSP is widely regarded as an NP-hard problem because 

of (i) deciding which operation can be served by the machine, 
which is known as the routing problem, and (ii) decisions on 

the sequence of operations on each machine, which is known 
as the sequence problem (Alzaqebah, et al., 2022). According 
to Wu and Cai (2021); Jedrzejowicz and Wierzbowska 
(2022), the n multiplies m FJSSP is described as:

A set of n jobs J= {J1, J2,…,Jn} must be handled on 
a set of M machines M={M1, M2,…,Mn}. Each job j ∈ J 
is characterized by a sequence of nj operations Oj= {Oj,1, 
Oj,2,…, Oj, nj}. Each task might have a unique sequence 
of operations. These operations must be executed in the 
specified order. The following constraints characterize the 
problem (Bissoli, et al., 2018; Amirteimoori, et al., 2022):
1. For every operation o ∈ Oj of job j, there is a subset MSo 

of machines that execute the operation o with the duration 
dr for each r ∈ MSo.

2. Each operation o must be processed on precisely one 
machine r ∈ MSo and each machine can process exactly 
one operation at a time.

3. For each operation o processed on r machine, an 
uninterrupted duration dr is assigned.

4. Similar tasks adhere to a predetermined order.
5. Only one machine can be selected for each operation.
6. All jobs can be executed at the beginning of the work, and 

all machines are available.
7. As the processing proceeds, no preemptions or cancellations 

are permitted.
8. Each operation o has its beginning and end time co. 

A schedule is a set of all completion times {co | o ∈ Oj, 
1≤ j ≤ n} that satisfies all aforementioned constraints.

9. The time necessary to complete whole tasks is known as 
makespan: C cmax o O o

j j n


  

max
,1

The makespan is an optimization criterion which means 
identifying the schedule that minimizes it. Some constraints 
that may be considered with makespan finding in FJSSP:
(i) All machines are obtainable at time zero, and job groups are 

launched.
(ii) Machine setup time and the transportation time between 

operations are included in the processing time (Lu et al., 
2019; Şahman, 2021; Zhang, et al., 2021; Zhu, et al., 2022)

A. An Elucidation Example
An example is provided here to explain FJSSP. Given a 

set of three jobs (J=3) and three machines (M=3). Each 
job consists of a sequence of operations (Oj,i, and i is the 
number of operations for the job), which must be processed 

TABLE I
Optimization Objective of Different Algorithms for Solving FJSSP

Algorithm Objective Classification
ELGA Minimize process time and makespan. Evolutionary algorithm
IGA Minimize processing time, set-up time, and transportation time.Evolutionary algorithm
EHGA Minimize Makespan Evolutionary algorithm
HICSA Minimize makespan and the total energy consumption Physical law-based algorithms
CS, CS-BNG, CS-ILFMinimize Makespan Nature-inspired and swarm intelligence algorithms
MOGWO Minimize Makespan and total energy usage Nature-inspired and swarm intelligence algorithms
MCA Minimize Makespan Nature-inspired and swarm intelligence algorithms
CHA Minimize Makespan Nature-inspired and swarm intelligence algorithms
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consecutively. As shown in Table I, J1 has O11, O12, and 
O13. Every operation can be assigned to at least one elected 
machine out of a predefined subset of machines with a 
specific operation processing time on that machine. In other 
words, it can be suggested that M1 or M3 for O11 with times 
3 or 6, M2 or M3 for O12 with times 9 or 2, and M1 or M2 
for O13 with times 1 or 4, respectively.

J2 also consists of three operations: O21, O22, and 
O23. Each has a subset of machines that can be allocated 
for each operation within the determined time. O21 can 
be implemented on M1, M2 or M3 with time =3, 7 or 1, 
respectively. Correspondingly, O22 can be implemented on 
M2 or M3 with time = 7 or 1. O23 can be performed on M1 
or M3 with time = 8 or 5, respectively.

J3 has only two operations, O31 and O32, with a subset 
of machines M1 or M2 for O31 with times 3 or 6, and M2 
or M3 for OS with times 5 or 9, respectively as they can 
be processed within the associated time. The details of the 
explained example are depicted in Table II.

IV. The Use of AOOA for FJSSP Solving
To employ AOOA for FJSSP solving, the population 

representation and the AOOA phases were determined and 
the phases were adapted to be convenient for FJSSP.

A. AOOA Stages
AOOA is a new nature-inspired metaheuristic optimization 

algorithm proposed by Al-Sharqi, Al-Obaidi and Al-mamory 
(2024). Its concept depends on organizational behavior 
and biological processes of honeybees inside the apiary. 
Moreover, AOOA simulates the activities of hives’ members 
(queen, drone, and workers) during their lifecycle. AOOA 
consists of seven phases corresponding to honeybees’ 
different activities inside the apiary. These phases are 
initialization, drone exchange, Fertilization and Bees 
Breeding, Worker Lifecycle, Queen Investiture, Fading out, 
and Swarming. Fig. 1 illustrates the AOOA phases.

In the AOOA first phase, the population is randomly 
initiated considering the constraints of each job. The 
population consists of (h) numbers of hives each hive has 
a (b) number of bees. The population size is calculated 
according to Equation (1).
N h b   (1)

For FJSSP, the population consists of (N) numbers of 
hives and each hive has (r) jobs and (m) machines with (k) 
operations for each machine. The population was represented 
as a set of hives, each with a three-dimensional array of jobs 
(job), operations (op), and machines (M). Each 2D array (i.e. 
an individual) represents a possible scheduling solution as a 
sequence of different operations of jobs for each machine. 
Fig. 2 shows the population representation of FJSSP.

Drone exchange is the second phase of AOOA in which 
a randomly selected drone of one hive is exchanged with a 
drone from another hive as shown in Fig. 3.

In the third phase, the queen of each hive is fertilized with a 
list of fittest drones (those who have the minimum makespan) 
to produce (k) new bees according to the fertilization equation 
shown in (2) under the control of fertratio.
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Where QHi , dHi  represent the queen and drone of the ith 
hive, respectively. At the same time, (rand) represents a 
random number within [0,1].

To adapt AOOA to the FJSSP, a random number of 
machines (i.e., columns) is selected for each drone to fertilize 
the queen. The queen is searched for each job and operation 
(Jn,nj) pair in the selected machine of the drone. If found, it 
will be the first index of the newly generated bee. If it is not 
found, search for the next pair. The remaining pairs of (Jn, nj) 
will be given the rest of the indices as depicted in Fig. 4.

The newly generated bees are either drones or workers 
according to randomly generated value (rand).

The worker lifecycle is the fourth phase. This phase 
simulates the behavior of workers bees. Each worker is 
assigned an age representing the likelihood of transforming 
an existing bee into a new one. From a biological standpoint, 
the lifespan of workers spans from a minimum of 1 day to a 
maximum of 60 days. The worker’s life cycle is defined as 
the duration of the worker’s life in terms of the number of 
days to perform simple or 1-opt (i.e., one-optima), 2-opt, and 
3-opt based on the worker’s age translocation as follows:
 1–10: applying simple translocation on the worker (i),
 11–25: applying 2-opt worker (i),
 26–50: applying 3-opt worker (i),
 51–60: applying 2-opt worker (i),
 Otherwise, dropping worker (i).

As noted in (3), each period involves a certain number of 
modifications on the chosen worker to generate a new bee.
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Where WHi  is the worker of the ith hive, (rand) is a random 
number within [0,1), and wmax_g is the maximum age of the 

TABLE II
The Processing Time and Operation Assignment for a Set of Jobs

Job Operation Machine

M1 M2 M3
J1 O11 3 - 6

O12 - 9 2
O13 1 4 -

J2 O21 3 7 1
O22 - 7 1
O23 8 - 5

J3 O31 3 6 -
O32 - 5 9
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worker. To adopt AOOA for FJSSP, some columns are selected 
randomly where each column represents a specific machine. 
According to (rand), one, two, or three positions are randomly 
chosen to perform simple, 2-opt, or 3-opt translocations, 
respectively. An example of the worker translocation process is 
illustrated in Fig. 5, where the selected worker consists of five 
machines M1, M2, M3, M4, and M5. The randomly selected 
machines M1, M2, and M4 perform 3-opt, 2-opt, and simple 
(1-opt) respectively to generate a new bee. The fitness of new 
bees is calculated and it will be added to the population.

In the fifth phase, queen investiture, if the fitness of the 
new bee is better than the queen then the newly generated 
bee will be invested as the queen of this hive. This step 

guides the search toward enhanced solutions by exploiting 
good ones to find the optimal solution(s).

Naturally, bees’ max age is 60 days (sometimes less 
because of climate or diseases). They die at the end of their 
lifecycle. On the other hand, drones fade out after the queen 
fertilization process. AOOA simulates this behavior into 
the sixth phase, the fading out phase. AOOA controls the 
increasing size of populations in each hive of the apiary by 
adding a control parameter called fdratio which dominates the 
number of dying bees. The fdratio is ranged between 10% and 
30% of bees (a nature-inspired ratio).

The last phase of AOOA’s phases is the swarming phase. 
This phase mimics the swarming phenomenon of honeybee 

Fig. 1. Apiary Organizational-Based Optimization algorithm phases.
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behavior in which the bees split the crowded hive into two 
hives. Sratio is a control parameter added to manage the hive 
separation process. AOOA assumed that Sratio is a user-defined 
value tuned based on the problem.

V. Experiments and Results
 A. Comparison of the AOOA Performance with the 
Competing Algorithms
To confirm the efficacy and resilience of the suggested 

AOOA, it was compared to some competing metaheuristic 
algorithms using a total of 34 benchmark instances, with 
different sizes (small, medium, and large) scales, were used 
in the experiments. These benchmark instances consist of 

Brandimarte Data (BRdata) (MK01-MK10) (Brandimarte, 
1993) and Hurink edata (la01-la08), rdata (la01-la08), and 
vdata (la01-la08) (Hurink, Jurisch and Thole, 1994).

The first test was to investigate the AOOA Performance 
of MK01-MK10 Instances. The effectiveness of AOOA’s 
performance was validated by comparing the FJSSP results with 
other metaheuristic algorithms, namely, the ELGA, EHGA, IGA 
(Zhang et al., 2020), MOGWO (Luo, Zhang and Fan, 2019), 
and HICSA (Li, et al., 2022). The experiments were performed 
through 10 independent runs and 50 iterations for each run. 
The experimental results were evaluated statistically using the 
relative percentage difference (RPD) and compared to the lower 
bound (LB). FJSSP has a known LB to which the results would 
be comparable. The calculation method of RPD is shown in (4)

Fig. 2. Flexible job shop scheduling problem population representation.

Fig. 3. Drone exchange between two randomly selected hives.
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100%  (4)

Where Best Cmax denotes the optimal makespan value 
produced by the algorithm, and LB denotes each instance’s 
known lower bound value. Based on Equation 4, it can be 
noticed that a decrease in the RPD value could correspond to 
a reduction in the gap between an algorithm solution result 
and LB, indicating a closer match between the two values. 
Hence, if the optimal solution found by AOOA matches LB, 
the result of RPD equals zero. Table III displays the problem 
instance, its size, the LB, the minimum makespan (best Cmax), 

RPD, and Rank which ranks the AOOA and the competing 
algorithms according to the RPD value. The optimal value 
acquired by AOOA has lower RPD values than other 
algorithms for MK01-MK09 and a competitive near-lower 
value for MK10. This reflects the excellent performance of 
AOOA. Best RPD results are denoted in bold and a zero-
value means achieving LB. The optimal values that match 
LB are highlighted in bold with the (*) symbol.

The outcomes confirm that AOOA achieves first rank 
in comparison with ELGA, EHGA, IGA, MOGWO, and 
HICSA in MK01-MK09 and comes in second rank in MK10. 
AOOA successfully found the optimal solution for MK08. 
This validates the superiority of the proposed algorithm in 

Fig. 4. Queen fertilization with the best drone.

Fig. 5. Worker translocation process.
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exploring the search region and guiding the search toward 
optimal solutions.

The second test was to verify the robustness and 
effectiveness of AOOA on 24 instances of the Hurink 
dataset. The test was partitioned into three subtests: 
edata, rdata, and vdata with (la1- la8) for each. A set of 
five metaheuristic optimization algorithms: CS, CS-BNG, 
CS-ILF (Al-Obaidi and Hussein, 2016), CHA (Al-Obaidi, 
Abdullah and Ahmed, 2017), and MCA (Al-Obaidi, 
Abdullah and Ahmed, 2018) was selected for comparison 
with AOOA. Table IV illustrates the comparison results 
of Hurink datasets for the compared algorithms. The 
comparison was based on the RPD and ranked the 
competing algorithms accordingly. The best  values are 
identified in bold type and the optimal values that match 
LB are highlighted in bold with the (*) symbol.

The results show the superiority of AOOA rank in edata 
la1-la8 over other algorithms. In rdata, AOOA was superior 
in la2 and came in the second rank in la3 while it came in 
the third rank in la1, la4, la5, la6, la7, and la8. For the vdata, 
the results proved the supremacy of AOOA in la1, la3, and 
la7 instances while it came in the second rank in la4 and 
la5. AOOA came in the third rank in la6 and la7. For la2, 
AOOA is in the fourth rank of RPD.

TABLE III
Comparison Results Of Makespan For Instances (MK01-MK10) with 

Other Algorithms of (Luo, Zhang and Fan, 2019) and (Li, et al., 2022)

Instance Size LB Parameter ELGA EHGA IGA MOGWO HICSA AOOA
MK01 10×6 36 Best Cmax 82 68 65 70 87 45

RPD 78 61.5 57.4 64.2 82.9 22.2
Rank 5 3 2 4 6 1

MK02 10×6 24 Best Cmax 63 57 52 61 80 41
RPD 62.9 89.7 81.5 73.7 87.1 52.3
Rank 5 3 2 4 6 1

MK03 15×8 204Best Cmax 350 330 313 322 445 247
RPD 27.8 52.7 47.2 42.2 44.9 19.1
Rank 2 6 5 3 4 1

MK04 15×8 48 Best Cmax 120 112 107 106 162 65
RPD 85.7 80 76.1 75.3 108.6 30.1
Rank 5 4 3 2 6 1

MK05 15×4 168Best Cmax 314 284 276 287 447 197
RPD 60.6 51.3 48.6 52.3 90.7 15.9
Rank 5 3 2 4 6 1

MK06 10×15 33 Best Cmax 174 158 129 159 207 121
RPD 136.2 130.9 118.5 131.3 145 114.3
Rank 5 3 2 4 6 1

MK07 20×5 133Best Cmax 311 265 267 255 418 197
RPD 80.2 66.3 67 62.9 103.4 38.8
Rank 5 3 4 2 6 1

MK08 20×10 523Best Cmax 805 783 781 792 543 523*
RPD 42.5 39.8 39.6 40.9 3.8 0
Rank 6 4 3 5 2 1

MK09 20×10 299Best Cmax 615 566 567 548 480 424
RPD 69.1 61.7 61.9 58.8 46.5 34.6
Rank 6 4 5 3 2 1

MK10 20×15 165Best Cmax 474 494 424 457 304 357
RPD 96.7 99.8 87.9 93.9 59.3 73.6
Rank 5 6 3 4 1 2

TABLE IV
Comparison Results of Makespan for Hurink with Competing 

Algorithms

Instance Size LB Parameter CS CS-BNG CS-ILF CHA MCA AOOA
edata-la1 10×5 609 Best Cmax 729 636 634 888 780 614 

RPD 17.9 4.3 4 37.3 24.6 0.8
Rank 4 3 2 6 5 1

edata-la2 10×5 655 Best Cmax 783 707 694 823 724 655*
RPD 17.8 7.6 5.8 22.7 10 0
Rank 5 3 2 6 4 1

edata-la3 10×5 550 Best Cmax 663 593 588 732 706 550*
RPD 18.6 7.5 6.7 28.4 24.8 0
Rank 4 3 2 6 5 1

edata-la4 10×5 568 Best Cmax 709 620 619 830 703 568*
RPD 22.1 8.8 8.6 37.5 21.2 0
Rank 5 3 2 6 4 1

edata-la5 10×5 503 Best Cmax 605 525 526 681 655 522
RPD 18.4 4.3 4.5 30.1 26.3 3.7
Rank 4 2 3 6 5 1

edata-la6 15×5 833 Best Cmax 976 864 861 1332 1229 833*
RPD 15.8 3.7 3.3 46.1 38.4 0
Rank 4 3 2 6 5 1

edata-la7 15×5 762 Best Cmax 960 818 819 1255 1136 785
RPD 23 7.1 7.2 48.9 39.4 3
Rank 4 2 3 6 5 1

edata-la8 15×5 845 Best Cmax 1001 880 868 1257 1129 852
RPD 16.9 4.1 2.7 39.2 28.8 0.8
Rank 4 3 2 6 5 1

rdata-la1 10×5 570 Best Cmax 723 607 609 665 789 621
RPD 23.7 6.3 6.6 15.4 32.2 8.6
Rank 5 1 2 4 6 3

rdata-la2 10×5 529 Best Cmax 680 573 567 633 770 554
RPD 25 8 6.9 17.9 37.1 4.6
Rank 5 3 2 4 6 1

rdata-la3 10×5 477 Best Cmax 621 518 512 590 708 514
RPD 26.2 8.2 7.1 21.2 39 7.5
Rank 5 3 1 4 6 2

rdata-la4 10×5 502 Best Cmax 646 542 538 623 720 551
RPD 25.1 7.7 6.9 21.5 35.7 9.3
Rank 5 2 1 4 6 3

rdata-la5 10×5 457 Best Cmax 577 484 480 568 667 489
RPD 23.2 5.7 4.9 21.7 37.4 6.8
Rank 5 2 1 4 6 3

rdata-la6 15×5 799 Best Cmax 974 832 821 1044 1252 857
RPD 19.7 4 2.7 26.6 44.2 7
Rank 4 2 1 5 6 3

rdata-la7 15×5 749 Best Cmax 917 779 776 1005 1123 802
RPD 20.2 3.9 3.5 29.2 40 6.8
Rank 4 2 1 5 6 3

rdata-la8 15×5 765 Best Cmax 938 793 790 1061 1203 823
RPD 20.3 3.6 3.2 32.4 44.5 7.3
Rank 4 2 1 5 6 3

vdata-la1 10×5 570 Best Cmax 728 613 609 671 815 607
RPD 24.3 7.3 6.6 16.3 35.4 6.3
Rank 5 3 2 4 6 1

vdata-la2 10×5 529 Best Cmax 675 565 564 560 770 574
RPD 24.3 6.6 6.4 5.7 37.1 8.2
Rank 5 3 2 1 6 4

vdata-la3 10×5 477 Best Cmax 627 515 520 574 706 515
RPD 27.2 7.7 8.6 18.5 38.7 7.7
Rank 4 1 2 3 5 1

vdata-la4 10×5 502 Best Cmax 652 534 531 641 706 534

(Contd...)



ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X 

102 http://dx.doi.org/10.14500/aro.11609 

B. Sensitivity Analysis
AOOA population consists of two critical parameters: the 

number of hives (h) and bees (b). As the number of machines 
and jobs vary in FJSSP, the population size of AOOA should 
also vary to fit the search space. Therefore, it makes sense to 
inspect the impact of different (h) and (b). For this reason, 
two scales were used to fit all sizes of NxM where N is the 
number of jobs and M is the number of machines. SSA and 
MSA apiary were tested for each instance of benchmark data 
with small, medium, and large-sized jobs and machines. This 
can disclose whether SSA can find the best results, so there is 
no need to increase computational complexity by increasing 
population size and its consequent computations using MSA. 
Table V illustrates the apiary scales of FJSSP. Each instance 
was tested against all hive sizes with all bees’ numbers. 
However, experiments manifest that increasing (h) and (b) to 
be convenient for LSA yields increasing computational time 
at a dramatic rate. Therefore, MSA was adopted to include 
both medium and large-scale FJSS problem sizes.

By observing the results of all 34 instances illustrated in 
Table VI, it is clear that the minimum makespan was found 
using SSA for small factories with small-scale jobs and 
machines of MK instances (i.e., MK1 and MK2). When the 
size of factories increases, the minimum makespan was found 
in MSA, MK3, MK5, MK7, MK10. In MK4 and MK6, there 
was a slight difference in SSA and MSA results in both best 
and average makespan where the best was found in SSA. In 
MK8 and MK9 both SSA and MSA gave the same results. 
Larger values than eight and seventy for h and b, respectively 
failed to achieve closer results to the optimal solution but this 
significantly increased the implementation time. Moreover, 
most optimal solutions (i.e., minimum makespan) appeared 
in the early iterations, and the ultimate solution appeared in 
iteration 50.

It was evident in the results of edata, rdata, and vdata that 
70% of best Cmax was found using MSA in edata (la1, la6, 
la7, and la8), rdata (la1, la4, la6, la7, and la8), and vdata 
(la2, la4, la5, la7, and la8). Edata la2, la3, and la4, SSA, and 
MSA gave the same results, but the mean Cmax of MSA was 
better than the Cmax of SSA. Therefore, edata la2, la3, and 

la4 results were counted within the 17 instances of the best 
Cmax of MSA (i.e. 70%). The best Cmax resulting from SSA 
was 7 instances with 30% in edata (la5), rdata (la2, la3, and 
la5), and vdata (la1, la3, and la6). The results proved that the 
effect of increasing population size using MSA on enhancing 
the minimum and mean makespan is bigger for MS factories 
than for SS factories. The best values  of (Best Cmax) and 
(Mean Cmax) are identified in bold type.

C. Performance Analysis
In this section, the results and findings analysis will 

be discussed. The discussion is divided into two parts: 
statistical performance analysis of AOOA with the competing 
algorithms and limitations.

The first part is divided into two subparts. The first subpart 
investigates the relationship between the AOOA and the 
five competing algorithms using a paired samples t-test. 
We analyzed the data from samples of the six participant 
algorithms, categorizing them based on (ELGA, EHGA, 
IGA, MOGWO, HICSA, and AOOA) for MK instances 
and (CS, CS-BNG, CS-ILF, CHA, MCA, and AOOA) for 
Hurink dataset. Table VII shows the p-values for the MK01-
MK10, edata, rdata, and vdata instances of the AOOA vs. 
the competing algorithms with degrees of freedom (df=8), 
sample size (N=9), and significance level (α = 0.05). The 
p-values ≥ (α) are highlighted in bold type.

The paired samples t-test yielded a t statistic and the 
calculated p-value shown in Table VII, indicating an 
extremely statistically significant difference between AOOA 
and other algorithms at the α = 0.05 level. The low p-values 
of AOOA (except for edata5, rdata2 - rdata5 of CS-BNG, and 
CS-ILF) indicate strong evidence against the null hypothesis 
proving that the results are significant.

The second subpart measures the AOOA performance 
for the 34 instances compared to the competing algorithms 
using group-based superiority in finding the best makespan. 
AOOA outperformed ELGA, EHGA, IGA, and MOGWO in 
10 MK instances with 100% superiority. On the other hand, 
it outperformed HICSA in 9 MK instances (MK1-MK9) and 
competed with HICSA on MK10. For edata, AOOA was 
superior to all competing algorithms: CS, CS-BNG, CS-ILF, 
CHA, and MCA with 100% superiority. In rdata and vdata, 
AOOA was superior to CS and MCA in all 16 instances while 
it was superior to CHA in all eight rdata instances and seven 

TABLE IV
(Continued)

Instance Size LB Parameter CS CS-BNG CS-ILF CHA MCA AOOA
RPD 26 6.2 5.6 24.3 33.8 6.2
Rank 4 2 1 3 5 2

vdata-la5 10×5 457 Best Cmax 587 485 499 531 645 499
RPD 24.9 5.9 8.8 15 34.1 8.8
Rank 4 1 2 3 5 2

vdata-la6 15×5 799 Best Cmax 981 826 821 1042 1212 839
RPD 20.4 3.3 2.7 26.4 41.1 4.9
Rank 4 2 1 5 6 3

vdata-la7 15×5 749 Best Cmax 941 774 773 968 1130 796
RPD 22.7 3.3 3.2 25.5 40.6 6.1
Rank 4 2 1 5 6 3

vdata-la8 15×5 765 Best Cmax 952 779 787 908 1181 777
RPD 21.8 1.8 2.8 17.1 42.8 1.6
Rank 5 2 3 4 6 1

TABLE V
Apiary Parameter Values According to FJSSP Problem Size

Problem size Apiary Scale Number of Hives Number of Bees

Job Machines
Small 10 5 Small-scale 

apiary (SSA)
3
4
5

30
40
50

10 6
Medium 15 4

15 5 Medium scale 
apiary (MSA)

6
7
8

50
60
70

15 8
20 5

Large 10 15
20 10
20 15
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TABLE VI
Best and Mean Makespan Results using SSA and MSA of MK1-MK10

Instance Apiary Scale Best Cmax Mean Cmax Instance Apiary Scale Best Cmax Mean Cmax

MK1 SSA 45 54.1 edata-la8 SSA 854 878.7
MSA 46 53.9 MSA 852 888.2

MK2 SSA 41 47.8 rdata-la1 SSA 632 678.9
MSA 43 46 MSA 621 667.2

MK3 SSA 257 274.3 rdata-la2 SSA 554 640
MSA 247 270.2 MSA 588 622.3

MK4 SSA 65 85.2 rdata-la3 SSA 514 592.4
MSA 70 81.1 MSA 525 573.9

MK5 SSA 199 213.4 rdata-la4 SSA 562 611.1
MSA 197 209.7 MSA 551 595.3

MK6 SSA 121 138.8 rdata-la5 SSA 489 549.1
MSA 125 135.5 MSA 517 548.2

MK7 SSA 203 228.6 rdata-la6 SSA 894 927.9
MSA 197 227.1 MSA 857 914.73

MK8 SSA 523 523 rdata-la7 SSA 814 863.9
MSA 523 523 MSA 802 852.8

MK9 SSA 424 454.5 rdata-la8 SSA 834 885.4
MSA 424 450.8 MSA 823 884.2

MK10 SSA 363 378.6 vdata-la1 SSA 607 685.2
MSA 357 381.6 MSA 644 677.4

edata-la1 SSA 637 672.9 vdata-la2 SSA 576 637.3
MSA 614 650 MSA 574 627.6

edata-la2 SSA 655 673.9 vdata-la3 SSA 515 573.7
MSA 655 663.2 MSA 539 565.1

edata-la3 SSA 550 566.3 vdata-la4 SSA 545 603.7
MSA 550 563.9 MSA 534 586.4

edata-la4 SSA 568 597.5 vdata-la5 SSA 503 557.8
MSA 568 587.8 MSA 499 538.2

edata-la5 SSA 522 560.3 vdata-la6 SSA 839 911.3
MSA 524 551.9 MSA 870 920.4

edata-la6 SSA 849 909.3 vdata-la7 SSA 810 871.4
MSA 833 892.4 MSA 796 866.7

edata-la7 SSA 795 844.7 vdata-la8 SSA 834 902.2
MSA 785 826.7 MSA 777 874.5

TABLE VII
Paired Samples t-test and P value for AOOA versus Other Algorithms of Instances MK01-10, EDATA01-08, RDATA01-08, AND VDATA01-08, DF=8, 

N=9, Α=0.05

PI AOOA VS. t Sig. (2-tailed)
p-value

PI AOOA VS. t Sig. (2-tailed)
p-value

MK1 ELGA 26.407 4.54629E-09 MK6 ELGA 21.964 1.94932E-08
EHGA 18.141 8.75736E-08 EHGA 55.763 1.18696E-11
IGA 15.656 2.76462E-07 IGA 7.069 0.00011
MOGWO 20.346 3.56036E-08 MOGWO 26.382 4.58033E-09
HICSA 26.328 4.65453E-09 HICSA 52.178 2.01724E-11

MK2 ELGA 20.084 3.94225E-08 MK7 ELGA 35.207 4.63615E-10
EHGA 17.605 1.10756E-07 EHGA 17.519 1.15079E-07
IGA 9.197 1.57994E-05 IGA 18.973 6.16255E-08
MOGWO 10.670 5.22089E-06 MOGWO 14.493 5.02867E-07
HICSA 27.086 3.71812E-09 HICSA 69.046 2.15518E-12

MK3 ELGA 27.721 3.09392E-09 MK8 ELGA 149.000 4.60432E-15
EHGA 28.156 2.73463E-09 EHGA 229.399 1.45963E-16
IGA 20.616 3.20934E-08 IGA 188.259 7.09268E-16
MOGWO 23.233 1.25126E-08 MOGWO 155.568 3.26094E-15
HICSA 46.764 4.83285E-11 HICSA 19.228 5.54874E-08

MK4 ELGA 66.287 2.98493E-12 MK9 ELGA 70.795 1.76492E-12
EHGA 31.825 1.03469E-09 EHGA 39.941 1.69834E-10
IGA 33.942 6.20127E-10 IGA 40.510 1.51749E-10

(Contd...)
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TABLE VII
(Continued)

PI AOOA VS. t Sig. (2-tailed)
p-value

PI AOOA VS. t Sig. (2-tailed)
p-value

MOGWO 22.277 1.74305E-08 MOGWO 40.827 1.42600E-10
HICSA 92.655 2.05504E-13 HICSA 16.397 1.92877E-07

MK5 ELGA 83.326 4.79935E-13 MK10 ELGA 33.070 7.62695E-10
EHGA 45.667 5.84033E-11 EHGA 36.765 3.28452E-10
IGA 59.713 6.87372E-12 IGA 21.805 2.06362E-08
MOGWO 50.579 2.58547E-11 MOGWO 43.756 8.21037E-11
HICSA 153.139 3.69824E-15 HICSA -9.330 1.42094E-05

edata-la1 CS 23.465 1.15698E-08 edata-la5 CS 13.496 8.71455E-07
CS-BNG 1.982 0.08280 CS-BNG 1.197 0.26552
CS-ILF 2.366 0.04555 CS-ILF 0.965 0.36276
CHA 38.736 2.16744E-10 CHA 37.789 2.63954E-10
MCA 18.805 6.60635E-08 MCA 25.873 5.34432E-09

edata-la2 CS 73.041 1.37505E-12 edata-la6 CS 39.804 1.74550E-10
CS-BNG 39.179 1.98018E-10 CS-BNG 11.994 2.15235E-06
CS-ILF 21.290 2.49111E-08 CS-ILF 6.337 0.00022
CHA 97.054 1.41831E-13 CHA 133.905 1.08180E-14
MCA 74.046 1.23295E-12 MCA 132.679 1.16434E-14

edata-la3 CS 131.109 1.28065E-14 edata-la7 CS 64.626 3.65552E-12
CS-BNG 23.170 1.27823E-08 CS-BNG 6.818 0.00014
CS-ILF 36.156 3.75183E-10 CS-ILF 7.230 8.98005E-05
CHA 231.587 1.35290E-16 CHA 95.006 1.68205E-13
MCA 130.255 1.34932E-14 MCA 81.851 5.53566E-13

edata-la4 CS 44.260 7.49525E-11 edata-la8 CS 57.522 9.26340E-12
CS-BNG 20.171 3.81019E-08 CS-BNG 14.661 4.60020E-07
CS-ILF 14.648 4.63250E-07 CS-ILF 6.058 0.00030
CHA 54.677 1.38874E-11 CHA 137.617 8.69330E-15
MCA 45.279 6.25117E-11 MCA 104.127 8.08257E-14

rdata-la1 CS 46.593 4.97624E-11 rdata-la5 CS 8.074 4.08754E-05
CS-BNG -3.386 0.00956 CS-BNG −1.584 0.15175
CS-ILF -3.146 0.01369 CS-ILF −1.460 0.18245
CHA 4.441 0.00217 CHA 7.829 5.09974E-05
MCA 31.532 1.11355E-09 MCA 20.961 2.81675E-08

rdata-la2 CS 14.019 6.50345E-07 rdata-la6 CS 16.055 2.27228E-07
CS-BNG 1.609 0.14633 CS-BNG 4.677 0.00159
CS-ILF 0.192 0.85243 CS-ILF 4.191 0.00303
CHA 6.378 0.00021 CHA 9.994 8.52846E-06
MCA 25.276 6.42756E-09 MCA 4.314 0.00257

rdata-la3 CS 9.365 1.38234E-05 rdata-la7 CS 25.866 5.35586E-09
CS-BNG −0.487 0.63925 CS-BNG −7.338 8.08969E-05
CS-ILF −1.953 0.08656 CS-ILF −11.057 3.99117E-06
CHA 6.789 0.00014 CHA 61.686 5.30169E-12
MCA 16.631 1.72711E-07 MCA 85.750 3.81619E-13

rdata-la4 CS 11.872 2.32641E-06 rdata-la8 CS 34.023 6.08574E-10
CS-BNG −0.527 0.61264 CS-BNG −7.780 5.33524E-05
CS-ILF −0.192 0.85272 CS-ILF −14.344 5.44727E-07
CHA 8.752 2.27471E-05 CHA 57.098 9.82709E-12
MCA 17.356 1.23754E-07 MCA 112.547 4.34061E-14

vdata-la1 CS 17.314 1.26166E-07 vdata-la5 CS 32.655 8.43151E-10
CS-BNG 4.825 0.00131 CS-BNG 4.206 0.00297
CS-ILF 4.851 0.00127 CS-ILF 5.145 0.00088
CHA 10.120 7.76489E-06 CHA 7.075 0.00010
MCA 7.542 6.66079E-05 MCA 8.051 4.17167E-05

vdata-la2 CS 17.408 1.20921E-07 vdata-la6 CS 11.565 2.83930E-06
CS-BNG 4.513 0.00197 CS-BNG 4.736 0.00147
CS-ILF 4.529 0.00193 CS-ILF 4.664 0.00161
CHA 4.489 0.00203 CHA 8.006 4.34181E-05
MCA 7.665 5.93336E-05 MCA 4.348 0.00245

vdata-la3 CS 14.976 3.90236E-07 vdata-la7 CS 17.341 1.24636E-07
CS-BNG 5.267 0.00076 CS-BNG 4.316 0.00256

(Contd...)
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TABLE VII
(Continued)

PI AOOA VS. t Sig. (2-tailed)
p-value

PI AOOA VS. t Sig. (2-tailed)
p-value

CS-ILF 5.827 0.00039 CS-ILF 4.138 0.00326
CHA 8.835 2.12313E-05 CHA 14.593 4.76762E-07
MCA 8.721 2.33440E-05 MCA 5.555 0.00054

vdata-la4 CS 20.845 2.94166E-08 vdata-la8 CS 11.476 3.01076E-06
CS-BNG 5.574 0.00053 CS-BNG 4.787 0.00138
CS-ILF 5.513 0.00057 CS-ILF 5.662 0.00047
CHA 18.180 8.61057E-08 CHA 14.528 4.93665E-07
MCA 8.517 2.77472E-05 MCA 5.558 0.00054

vdata instances (la1, la3-la8). AOOA outperformed CS-BNG 
in two rdata instances (la2, la3) while overcame CS-ILF 
algorithm in la2. However, AOOA overcame CS-BNG in 
two vdata instances (la1, la8) and was equal to it in rank in 
la3 and la4, while overcame CS-ILF in three vdata (la1, la3, 
and la8) and was equal to it in rank in la2. Finally, it was 
found that AOOA achieved better results over CS, CS-BNG, 
CS-ILF, CHA, and MCA in solving 24, 12, 12, 23, and 24 
FJSSP instances, respectively. Table VIII shows the AOOA 
superiority over competing algorithms for edata, rdata, and 
vdata datasets.

We believe that there are several factors behind the 
superiority of AOOA which can be summarized in 
(i) The concept of multiple populations generating a large 
diverse population, (ii) good exploration and exploitation 
mechanisms, (iii) two sources to generate new solutions 
represented in queen fertilization and worker lifecycle, and 
(iv) drone exchange, fading out, and swarming increase 
diversity and prevent stagnation.

Although AOOA presented a superior performance, it still 
has some limitations. AOOA used classical 34 instances of 
FJSS benchmark datasets while other benchmark datasets can 
be used such as (Kacem, Hammadi and Borne, 2002; Fattahi, 
Saidi Mehrabad and Jolai, 2007), etc. More objective functions 
and constraints can be considered such as maximizing 
the profit by resource utilization or machine performance, 
minimizing transportation time, process time, job delay, and 
energy consumption. Furthermore, enhancement can be made 
to AOOA so that better results are obtained.

VI. Conclusion
This paper introduced a solution to one of the NP-hard 
real-world problems, namely the FJSSP using AOOA, a 

TABLE VIII
Group-based Superiority of AOOA

Dataset Number of Instances Where AOOA is Better

ELGA EHGA IGA MOGWO HICSA
MK1-10 8 8 8 8 7

CS CS-BNG CS-ILF CHA MCA
edata 8 8 8 8 8
rdata 8 2 1 8 8
vdata 8 2 3 7 8
Total instances 24 12 12 23 24

new nature-inspired metaheuristic optimization algorithm. 
Its main structure was based on the organizational behavior 
of honey bees inside the apiary. Benchmark datasets of 
thirty-four instances of various sizes (small, medium, and 
large) scales were employed in the experiments to find the 
minimum makespan (Cmax). The results were compared to ten 
of the state-of-the-art algorithms, five for BRdata and five 
for Hurink edata, rdata, and vdata. They were statistically 
assessed using the paired samples t-test and p-value, RPD, 
and group-based superiority statistical analysis to prove the 
AOOA performance. The p-values of AOOA at α = 0.05 
level (except for MK09 and edata02) indicate strong 
evidence against the null hypothesis proving that the results 
are significant. AOOA outperformed ELGA, EHGA, IGA, 
and MOGWO in solving all 10 MK instances and HICSA in 
solving 9 MK instances. Moreover, AOOA overcame CS, CS-
BNG, CS-ILF, CHA, and MCA in solving 24, 12, 12, 23, and 
24 instances of edata, rdata, and vdata, respectively. In many 
instances, AOOA achieved LB or near-optimal solutions to 
compete with other algorithms. The research demonstrated 
that the new nature-inspired algorithm can solve NP-hard 
problems effectively and efficiently. The overall findings 
were promising in comparison with some metaheuristic 
optimization algorithms.
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