
ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

94 http://dx.doi.org/10.14500/aro.11609

Flexible Job Shop Scheduling Problem-Solving Using
Apiary Organizational-Based Optimization Algorithm

Mais A. Al-Sharqi1†, Ahmed T. Sadiq2 and Safaa O. Al-mamory3

1Informatics Institute for Postgraduate Studies, Iraqi Commission for Computers and Informatics,
Baghdad, Iraq

2Department of Computer Science, University of Technology,
Baghdad, Iraq

3Department of Cybersecurity, College of Information Technology, University of Babylon,
Babylon, Iraq

Abstract—Flexible job shop scheduling problem (FJSSP) is
a complex and challenging problem that plays a crucial role in
industrial and manufacturing production. FJSSP is an expansion
of the standard job shop scheduling problem (JSSP). One of
FJSSP’s objectives that the manufacturing system competing
for is minimizing the makespan. This paper uses a new nature-
inspired metaheuristic optimization algorithm called the Apiary
Organizational-Based Optimization algorithm (AOOA) to solve
the FJSSP. This Algorithm simulates the organizational behavior
of honeybees inside the apiary and translates their activities and
vital processes during their lifecycle into phases that can solve
such NP-hard problems. Two benchmark datasets, Brandimarte
and Hurink, with 10 MK instances and 24 (edata, rdata, and
vdata) instances respectively, were used to demonstrate the ability
of AOOA to solve FJSSP. Moreover, the results of AOOA were
compared with a set of state-of-the-art algorithms and statistically
measured using the paired samples t-test and p-value, RPD, and
group-based superiority statistical analysis to test its performance.
AOOA outperformed Elitism GA, Enhanced GA, Improved GA,
and MOGWO in solving all 10 MK instances and HICSA in solving
9 MK instances out of 10. Moreover, AOOA overcame CS, CS-BNG,
CS-ILF, CHA, and MCA in solving 24, 12, 12, 23, and 24 instances of
edata, rdata, and vdata, respectively. AOOA proved its robustness,
showing promising outcomes.

Index Terms—Apiary Organizational-Based
Optimization Algorithm, Flexible job shop scheduling,
Makespan, Metaheuristic nature-inspired.

I. Introduction
In the era of advanced technology and intelligence, time
is important in manufacturing companies’ competition.
Production systems’ scheduling is the means to utilize

available resources and achieve more productivity in less
time (Meng, et al., 2024). The flexible job shop scheduling
problem (FJSSP) is an expansion of the standard job shop
scheduling problem (JSSP) which was debuted by Burcker
and Schlie in 1990 (Jiang, Yu and Chen, 2023). FJSSP is a
more difficult nondeterministic polynomial hard (NP-hard)
problem compared to JSP (Wang, et al., 2024). This is
because every job operation can be allocated to more
than one machine and might have variable processing
times (Song, et al., 2022). FJSSP is a single objective and
multiobjective based on the optimization problem and the
aim of the researcher. Reducing the entire processing time, or
makespan, is one of the most important objective functions.

The FJSS has significant applications and advantages that
gained the researchers’ attention (Xie, et al., 2019). Some of
these are: (1) Maximizing resource utilization by allocating
machines, tools, and labor in the best possible way.
(2) Minimizing makespan or the total time needed to finish
all tasks to maximize time efficiency. (3) Meeting client
delivery criteria and deadlines by effectively scheduling jobs
and resources. (4) Handling intricate production processes
because jobs in such industries may involve several
procedures and call for various resources at different times.
(5) Scheduling systems are meant to be flexible to adapt to
unexpected changes such as machine failures, urgent orders,
and job priority shifting. and (6) Cost reduction via FJSS
effective scheduling which not only saves cost but also
enhances competitiveness.

Nature-inspired metaheuristic algorithms are commonly
used to address NP-hard problems. The Organizational-
Based Optimization Algorithm (AOOA) proposed by
Al-Sharqi, Al-Obaidi and Al-mamory (2024) is a new nature-
inspired optimization algorithm that takes its steps from
the organizational behavior of honeybees inside the apiary.
The contribution of this paper is to employ the concept
of multiple populations of the apiary to solve the NP-
hard FJSSP and minimize the makespan using the AOOA.
A benchmark function of thirty-four instances distributed on
four datasets was used to test AOOA’s ability to solve FJSSP.
AOOA performance was compared with several well-known

ARO-The Scientific Journal of Koya University
Vol. XII, No. 2 (2024), Article ID: ARO.11609. 13 pages
Doi: 10.14500/aro.11609
Received: 28 April 2024; Accepted: 02 August 2024
Regular research paper; Published: 24 August 2024
†Corresponding author’s e-mail: Phd202110697@iips.edu.iq
Copyright © 2024 Mais A. Al-Sharqi, Ahmed T. Sadiq and
Safaa O. Al-mamory. This is an open-access article distributed under
the Creative Commons Attribution License (CC BY-NC-SA 4.0).

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11609 95

metaheuristic algorithms and showed superiority in the
results of scheduling time reduction (i.e., makespan).

The rest of this research is structured as follows. In Section
2, the related works are reviewed. Problem definition and an
elucidating example are discussed in Section 3. Section 4
explains the AOOA used to solve FJSSP. In Section 5, the
experimental results of FJSSP are presented and discussed.
Finally, Section 6 concludes the key points of this work and
highlights its possible future directions.

II. Related Work
Many metaheuristic algorithms were proposed to solve

FJSSP. In FJSSP, time is the most crucial factor represented by
makespan where the objective function is used to minimize it.
As the proposed algorithm in this present research is inspired
by the organizational behavior and lifecycle of honeybees in
the apiary, there is no similar related literature. Accordingly,
earlier works that were conducted to solve FJSSP are
outlined here. Previous literature can be categorized into
five groups based on natural operations; so many types of
metaheuristic algorithms were proposed (Rajwar, Deep and
Das, 2023). These algorithms can be categorized based on
their underlying precept into four essential groups.

The first group can refer to evolutionary algorithms. They
adopt Charles Darwin’s theory of natural selection or survival
of the fittest individuals. These algorithms are population-
based such as Genetic Algorithms (GA), Differential Evolution
(DE), Evolutionary Strategies (ES), Genetic Programming
(GP), and Gene Expression Programming (GEP).

Xie and Chen, 2018) designed the elitism genetic algorithm
(ELGA) that was paired with the elitism strategy in external
memory to define inaccurate time quota as interval grey
processing time. The proposed algorithm solved FJSSP by
minimizing the interval grey makespan.

Saving energy through production scheduling is a
complicated nonlinear programming problem in flexible
manufacturing systems with resource flexibility and complex
constraints. This led Dai, et al. (2019) to utilize intelligent
scheduling techniques to reduce energy consumption.
Accordingly, a multi-objective optimization model for FJSSP
with transportation restrictions was developed to decrease
energy usage and makespan. This was integrated with the
enhanced genetic algorithm (EHGA) in which the results
supported decision-makers in flexible manufacturing systems.

In another research study, an improved genetic algorithm
(IGA) was proposed by (Zhang, et al., 2020). This was
performed by combining the setup and transportation
times with the processing time. This was to minimize the
makespan time, total setup time, and total transportation
time. The research introduced three various methods to
improve the quality and diversity of the initial population.
The crossover was improved by artificial pairing to keep
reasonable solutions and improve poor solutions effectively.
Furthermore, a method for adaptive weighting was executed
to modify mutation probability and search ranges for
individuals within the population. Standard datasets were
used to support the efficacy of the proposed methodology.

Another group of metaheuristics is the physical law-based
algorithms. These algorithms depend on physical phenomena
such as Simulated Annealing (SA), Tabu Search (TS), Variable
Neighborhood Search (VNS), and Iterated Local Search
(ILS) or chemical reactions such as ions motion optimization
algorithm (IMOA), and thermal exchange optimization
(TEO). A research study examined the benefits and drawbacks
of using variable-size batching in manufacturing scheduling
(Li, et al., 2022). It was noticed that besides the flexibility of
this technique, it can increase not only energy consumption
but also scheduling searches. To solve this difficulty, both the
makespan and the total energy consumption were taken into
account. Hence, a two-stage multi-objective hybrid algorithm
(HICSA) was proposed. It combined the simulated annealing
algorithm (SAA) with the imperialist competitive algorithm
(ICA). Through various stages, the task sequence optimization
and lot-splitting approach were enhanced by performing SAA
with an iterated column generation algorithm. Experiments
demonstrate the efficiency of the proposed HICSA algorithm.

The third group is miscellaneous algorithms (Rajwar, Deep
and Das, 2023). These algorithms have influenced various
theories on human behavior, game theory, mathematical
theorems, politics, artificial thought, and other subjects.
Zeidabadi and Dehghani proposed the Puzzle Optimization
Algorithm (POA) to solve different optimization problems.
The basic idea of the proposed POA is the mathematical
simulation of solving a puzzle process (Zeidabadi and
Dehghani, 2022). They considered that each member of
the population is a puzzle that can be updated based on the
guidance of other members and tried to complete its puzzle
using the pieces suggested by other members.

The fourth group is represented by the nature-inspired and
swarm intelligence algorithms. The nature-inspired algorithms
are primarily based on animals’ natural organizational
behavior or biological processes during the lifecycle. This can
help them survive and adapt to their environment to achieve
their task efficiently. Swarm intelligence is a decentralized
and self-organized system in which individuals perform tasks
via collective and cooperative behavior. This is a population-
based system that reflects the primary characteristics of a
swarm system in adaptability (learning by doing), effective
communication, and knowledge-sharing. Examples of such
algorithms are Particle Swarm Optimization (PSO), Grey Wolf
Optimizer (GWO), Firefly Algorithm (FA), Bat Algorithm
(BA), Cuckoo Search (CS), and Artificial Bee Colony (ABC).

Al-Obaidi and Hussein, (2016) enhanced the Cuckoo
Search algorithm (CS). The initial modification was made
on the Best Neighbors Generation (CS-BNG) prediction,
whereas the second was based on the utilization of Iterative
Levy Flight (CS-ILF). Adjustments were made to the
defining characteristics of the CS algorithm to improve
search performance in the discrete state space. The proposed
algorithms enhanced the solutions’ quality and convergence
rate. Several FJSSP benchmark situations were tested to
evaluate the performance of the enhanced algorithms where
they outperformed the original cuckoo search method.

To make a balance between production competence and
environmental leverage, energy-efficient scheduling was

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

96 http://dx.doi.org/10.14500/aro.11609

prioritized for green manufacturing (Luo, Zhang and Fan,
2019). The research addressed the multi-objective flexible job
shop scheduling problem (MOFJSP) by employing variable
processing speed to minimize makespan and total energy
usage simultaneously. A multi-objective grey wolf optimization
(MOGWO) algorithm, which utilizes a three-vector
chromosomal encoding form, was introduced. The proposed
algorithm takes into consideration the assignment of machines,
speeds, and operation order. Extensive numerical experiments
on thirty-five different scale benchmarks were conducted to
verify the effectiveness of the suggested algorithm.

Based on the behavior of meerkats in the Kalahari Desert,
Sadiq Al-Obaidi, Abdullah and Ahmed (2018) introduced the
meerkat clan algorithm (MCA) as a new swarm intelligence
algorithm. By utilizing meerkat behavior such as sentry,
foraging, and babysitter, the algorithm partitions solution sets
and executes operations specifically on the foraging set. It
was found that the sentry identified the best solution. MCA
was used in solving FJSSP where the experimental results
showed better efficiency than the original Cuckoo Search,
Artificial Fish Search, and Camel Herd algorithms.

Al-Obaidi et al. proposed a new nature-inspired algorithm
that mimics camel herds’ behavior (Sadiq Al-Obaidi,
Abdullah and Ahmed, 2017). The role of the leader of
each herd was considered, which guided the herd to the
source of food and water depending on humidity value with
neighboring strategy. FJSSP was undertaken as a case study
to verify the proposed algorithm, Camel Herds Algorithm
(CHA) in which the results proved the ability of CHA to find
the optimal solution in the problem space. Table I summarizes
the metaheuristic algorithms that tackle the FJSSP.

The Apiary Organizational-Based Optimization algorithm
(AOOA) is a new nature-inspired algorithm that adopts the
concept of multiple populations by introducing the apiary
concept. AOOA simulates the organizational behavior of
honeybees (the queen, drones, and workers) inside the
apiary and the biological activities of workers’ bees during
their lifecycle. In this work, AOOA is employed to solve the
FJSSP where the concept of multiple populations is utilized
to minimize the makespan.

III. Problem Definition
FJSSP is widely regarded as an NP-hard problem because

of (i) deciding which operation can be served by the machine,
which is known as the routing problem, and (ii) decisions on

the sequence of operations on each machine, which is known
as the sequence problem (Alzaqebah, et al., 2022). According
to Wu and Cai (2021); Jedrzejowicz and Wierzbowska
(2022), the n multiplies m FJSSP is described as:

A set of n jobs J= {J1, J2,…,Jn} must be handled on
a set of M machines M={M1, M2,…,Mn}. Each job j ∈ J
is characterized by a sequence of nj operations Oj= {Oj,1,
Oj,2,…, Oj, nj}. Each task might have a unique sequence
of operations. These operations must be executed in the
specified order. The following constraints characterize the
problem (Bissoli, et al., 2018; Amirteimoori, et al., 2022):
1. For every operation o ∈ Oj of job j, there is a subset MSo

of machines that execute the operation o with the duration
dr for each r ∈ MSo.

2. Each operation o must be processed on precisely one
machine r ∈ MSo and each machine can process exactly
one operation at a time.

3. For each operation o processed on r machine, an
uninterrupted duration dr is assigned.

4. Similar tasks adhere to a predetermined order.
5. Only one machine can be selected for each operation.
6. All jobs can be executed at the beginning of the work, and

all machines are available.
7. As the processing proceeds, no preemptions or cancellations

are permitted.
8. Each operation o has its beginning and end time co.

A schedule is a set of all completion times {co | o ∈ Oj,
1≤ j ≤ n} that satisfies all aforementioned constraints.

9. The time necessary to complete whole tasks is known as
makespan: C cmax o O o

j j n

max
,1

The makespan is an optimization criterion which means
identifying the schedule that minimizes it. Some constraints
that may be considered with makespan finding in FJSSP:
(i) All machines are obtainable at time zero, and job groups are

launched.
(ii) Machine setup time and the transportation time between

operations are included in the processing time (Lu et al.,
2019; Şahman, 2021; Zhang, et al., 2021; Zhu, et al., 2022)

A. An Elucidation Example
An example is provided here to explain FJSSP. Given a

set of three jobs (J=3) and three machines (M=3). Each
job consists of a sequence of operations (Oj,i, and i is the
number of operations for the job), which must be processed

TABLE I
Optimization Objective of Different Algorithms for Solving FJSSP

Algorithm Objective Classification
ELGA Minimize process time and makespan. Evolutionary algorithm
IGA Minimize processing time, set-up time, and transportation time.Evolutionary algorithm
EHGA Minimize Makespan Evolutionary algorithm
HICSA Minimize makespan and the total energy consumption Physical law-based algorithms
CS, CS-BNG, CS-ILFMinimize Makespan Nature-inspired and swarm intelligence algorithms
MOGWO Minimize Makespan and total energy usage Nature-inspired and swarm intelligence algorithms
MCA Minimize Makespan Nature-inspired and swarm intelligence algorithms
CHA Minimize Makespan Nature-inspired and swarm intelligence algorithms

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11609 97

consecutively. As shown in Table I, J1 has O11, O12, and
O13. Every operation can be assigned to at least one elected
machine out of a predefined subset of machines with a
specific operation processing time on that machine. In other
words, it can be suggested that M1 or M3 for O11 with times
3 or 6, M2 or M3 for O12 with times 9 or 2, and M1 or M2
for O13 with times 1 or 4, respectively.

J2 also consists of three operations: O21, O22, and
O23. Each has a subset of machines that can be allocated
for each operation within the determined time. O21 can
be implemented on M1, M2 or M3 with time =3, 7 or 1,
respectively. Correspondingly, O22 can be implemented on
M2 or M3 with time = 7 or 1. O23 can be performed on M1
or M3 with time = 8 or 5, respectively.

J3 has only two operations, O31 and O32, with a subset
of machines M1 or M2 for O31 with times 3 or 6, and M2
or M3 for OS with times 5 or 9, respectively as they can
be processed within the associated time. The details of the
explained example are depicted in Table II.

IV. The Use of AOOA for FJSSP Solving
To employ AOOA for FJSSP solving, the population

representation and the AOOA phases were determined and
the phases were adapted to be convenient for FJSSP.

A. AOOA Stages
AOOA is a new nature-inspired metaheuristic optimization

algorithm proposed by Al-Sharqi, Al-Obaidi and Al-mamory
(2024). Its concept depends on organizational behavior
and biological processes of honeybees inside the apiary.
Moreover, AOOA simulates the activities of hives’ members
(queen, drone, and workers) during their lifecycle. AOOA
consists of seven phases corresponding to honeybees’
different activities inside the apiary. These phases are
initialization, drone exchange, Fertilization and Bees
Breeding, Worker Lifecycle, Queen Investiture, Fading out,
and Swarming. Fig. 1 illustrates the AOOA phases.

In the AOOA first phase, the population is randomly
initiated considering the constraints of each job. The
population consists of (h) numbers of hives each hive has
a (b) number of bees. The population size is calculated
according to Equation (1).
N h b (1)

For FJSSP, the population consists of (N) numbers of
hives and each hive has (r) jobs and (m) machines with (k)
operations for each machine. The population was represented
as a set of hives, each with a three-dimensional array of jobs
(job), operations (op), and machines (M). Each 2D array (i.e.
an individual) represents a possible scheduling solution as a
sequence of different operations of jobs for each machine.
Fig. 2 shows the population representation of FJSSP.

Drone exchange is the second phase of AOOA in which
a randomly selected drone of one hive is exchanged with a
drone from another hive as shown in Fig. 3.

In the third phase, the queen of each hive is fertilized with a
list of fittest drones (those who have the minimum makespan)
to produce (k) new bees according to the fertilization equation
shown in (2) under the control of fertratio.

New b
Q rand d Q if

d Q
d

Q
H

H H H
H H

H

H

i

i i i

i i

i

i

_
, .

(

 0 5

1
2

)) , .

 rand d OWHi

1
2

 (2)

Where QHi , dHi represent the queen and drone of the ith
hive, respectively. At the same time, (rand) represents a
random number within [0,1].

To adapt AOOA to the FJSSP, a random number of
machines (i.e., columns) is selected for each drone to fertilize
the queen. The queen is searched for each job and operation
(Jn,nj) pair in the selected machine of the drone. If found, it
will be the first index of the newly generated bee. If it is not
found, search for the next pair. The remaining pairs of (Jn, nj)
will be given the rest of the indices as depicted in Fig. 4.

The newly generated bees are either drones or workers
according to randomly generated value (rand).

The worker lifecycle is the fourth phase. This phase
simulates the behavior of workers bees. Each worker is
assigned an age representing the likelihood of transforming
an existing bee into a new one. From a biological standpoint,
the lifespan of workers spans from a minimum of 1 day to a
maximum of 60 days. The worker’s life cycle is defined as
the duration of the worker’s life in terms of the number of
days to perform simple or 1-opt (i.e., one-optima), 2-opt, and
3-opt based on the worker’s age translocation as follows:
 1–10: applying simple translocation on the worker (i),
 11–25: applying 2-opt worker (i),
 26–50: applying 3-opt worker (i),
 51–60: applying 2-opt worker (i),
 Otherwise, dropping worker (i).

As noted in (3), each period involves a certain number of
modifications on the chosen worker to generate a new bee.

NW W rand
W W

W
WH H

H
g

H
g

H
g Hi i

i i

i

i

.

_

_

max

max
 (3)

Where WHi is the worker of the ith hive, (rand) is a random
number within [0,1), and wmax_g is the maximum age of the

TABLE II
The Processing Time and Operation Assignment for a Set of Jobs

Job Operation Machine

M1 M2 M3
J1 O11 3 - 6

O12 - 9 2
O13 1 4 -

J2 O21 3 7 1
O22 - 7 1
O23 8 - 5

J3 O31 3 6 -
O32 - 5 9

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

98 http://dx.doi.org/10.14500/aro.11609

worker. To adopt AOOA for FJSSP, some columns are selected
randomly where each column represents a specific machine.
According to (rand), one, two, or three positions are randomly
chosen to perform simple, 2-opt, or 3-opt translocations,
respectively. An example of the worker translocation process is
illustrated in Fig. 5, where the selected worker consists of five
machines M1, M2, M3, M4, and M5. The randomly selected
machines M1, M2, and M4 perform 3-opt, 2-opt, and simple
(1-opt) respectively to generate a new bee. The fitness of new
bees is calculated and it will be added to the population.

In the fifth phase, queen investiture, if the fitness of the
new bee is better than the queen then the newly generated
bee will be invested as the queen of this hive. This step

guides the search toward enhanced solutions by exploiting
good ones to find the optimal solution(s).

Naturally, bees’ max age is 60 days (sometimes less
because of climate or diseases). They die at the end of their
lifecycle. On the other hand, drones fade out after the queen
fertilization process. AOOA simulates this behavior into
the sixth phase, the fading out phase. AOOA controls the
increasing size of populations in each hive of the apiary by
adding a control parameter called fdratio which dominates the
number of dying bees. The fdratio is ranged between 10% and
30% of bees (a nature-inspired ratio).

The last phase of AOOA’s phases is the swarming phase.
This phase mimics the swarming phenomenon of honeybee

Fig. 1. Apiary Organizational-Based Optimization algorithm phases.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11609 99

behavior in which the bees split the crowded hive into two
hives. Sratio is a control parameter added to manage the hive
separation process. AOOA assumed that Sratio is a user-defined
value tuned based on the problem.

V. Experiments and Results
 A. Comparison of the AOOA Performance with the
Competing Algorithms
To confirm the efficacy and resilience of the suggested

AOOA, it was compared to some competing metaheuristic
algorithms using a total of 34 benchmark instances, with
different sizes (small, medium, and large) scales, were used
in the experiments. These benchmark instances consist of

Brandimarte Data (BRdata) (MK01-MK10) (Brandimarte,
1993) and Hurink edata (la01-la08), rdata (la01-la08), and
vdata (la01-la08) (Hurink, Jurisch and Thole, 1994).

The first test was to investigate the AOOA Performance
of MK01-MK10 Instances. The effectiveness of AOOA’s
performance was validated by comparing the FJSSP results with
other metaheuristic algorithms, namely, the ELGA, EHGA, IGA
(Zhang et al., 2020), MOGWO (Luo, Zhang and Fan, 2019),
and HICSA (Li, et al., 2022). The experiments were performed
through 10 independent runs and 50 iterations for each run.
The experimental results were evaluated statistically using the
relative percentage difference (RPD) and compared to the lower
bound (LB). FJSSP has a known LB to which the results would
be comparable. The calculation method of RPD is shown in (4)

Fig. 2. Flexible job shop scheduling problem population representation.

Fig. 3. Drone exchange between two randomly selected hives.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

100 http://dx.doi.org/10.14500/aro.11609

RPD
Best C LB
Best C LB

max

max

2

100% (4)

Where Best Cmax denotes the optimal makespan value
produced by the algorithm, and LB denotes each instance’s
known lower bound value. Based on Equation 4, it can be
noticed that a decrease in the RPD value could correspond to
a reduction in the gap between an algorithm solution result
and LB, indicating a closer match between the two values.
Hence, if the optimal solution found by AOOA matches LB,
the result of RPD equals zero. Table III displays the problem
instance, its size, the LB, the minimum makespan (best Cmax),

RPD, and Rank which ranks the AOOA and the competing
algorithms according to the RPD value. The optimal value
acquired by AOOA has lower RPD values than other
algorithms for MK01-MK09 and a competitive near-lower
value for MK10. This reflects the excellent performance of
AOOA. Best RPD results are denoted in bold and a zero-
value means achieving LB. The optimal values that match
LB are highlighted in bold with the (*) symbol.

The outcomes confirm that AOOA achieves first rank
in comparison with ELGA, EHGA, IGA, MOGWO, and
HICSA in MK01-MK09 and comes in second rank in MK10.
AOOA successfully found the optimal solution for MK08.
This validates the superiority of the proposed algorithm in

Fig. 4. Queen fertilization with the best drone.

Fig. 5. Worker translocation process.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11609 101

exploring the search region and guiding the search toward
optimal solutions.

The second test was to verify the robustness and
effectiveness of AOOA on 24 instances of the Hurink
dataset. The test was partitioned into three subtests:
edata, rdata, and vdata with (la1- la8) for each. A set of
five metaheuristic optimization algorithms: CS, CS-BNG,
CS-ILF (Al-Obaidi and Hussein, 2016), CHA (Al-Obaidi,
Abdullah and Ahmed, 2017), and MCA (Al-Obaidi,
Abdullah and Ahmed, 2018) was selected for comparison
with AOOA. Table IV illustrates the comparison results
of Hurink datasets for the compared algorithms. The
comparison was based on the RPD and ranked the
competing algorithms accordingly. The best values are
identified in bold type and the optimal values that match
LB are highlighted in bold with the (*) symbol.

The results show the superiority of AOOA rank in edata
la1-la8 over other algorithms. In rdata, AOOA was superior
in la2 and came in the second rank in la3 while it came in
the third rank in la1, la4, la5, la6, la7, and la8. For the vdata,
the results proved the supremacy of AOOA in la1, la3, and
la7 instances while it came in the second rank in la4 and
la5. AOOA came in the third rank in la6 and la7. For la2,
AOOA is in the fourth rank of RPD.

TABLE III
Comparison Results Of Makespan For Instances (MK01-MK10) with

Other Algorithms of (Luo, Zhang and Fan, 2019) and (Li, et al., 2022)

Instance Size LB Parameter ELGA EHGA IGA MOGWO HICSA AOOA
MK01 10×6 36 Best Cmax 82 68 65 70 87 45

RPD 78 61.5 57.4 64.2 82.9 22.2
Rank 5 3 2 4 6 1

MK02 10×6 24 Best Cmax 63 57 52 61 80 41
RPD 62.9 89.7 81.5 73.7 87.1 52.3
Rank 5 3 2 4 6 1

MK03 15×8 204Best Cmax 350 330 313 322 445 247
RPD 27.8 52.7 47.2 42.2 44.9 19.1
Rank 2 6 5 3 4 1

MK04 15×8 48 Best Cmax 120 112 107 106 162 65
RPD 85.7 80 76.1 75.3 108.6 30.1
Rank 5 4 3 2 6 1

MK05 15×4 168Best Cmax 314 284 276 287 447 197
RPD 60.6 51.3 48.6 52.3 90.7 15.9
Rank 5 3 2 4 6 1

MK06 10×15 33 Best Cmax 174 158 129 159 207 121
RPD 136.2 130.9 118.5 131.3 145 114.3
Rank 5 3 2 4 6 1

MK07 20×5 133Best Cmax 311 265 267 255 418 197
RPD 80.2 66.3 67 62.9 103.4 38.8
Rank 5 3 4 2 6 1

MK08 20×10 523Best Cmax 805 783 781 792 543 523*
RPD 42.5 39.8 39.6 40.9 3.8 0
Rank 6 4 3 5 2 1

MK09 20×10 299Best Cmax 615 566 567 548 480 424
RPD 69.1 61.7 61.9 58.8 46.5 34.6
Rank 6 4 5 3 2 1

MK10 20×15 165Best Cmax 474 494 424 457 304 357
RPD 96.7 99.8 87.9 93.9 59.3 73.6
Rank 5 6 3 4 1 2

TABLE IV
Comparison Results of Makespan for Hurink with Competing

Algorithms

Instance Size LB Parameter CS CS-BNG CS-ILF CHA MCA AOOA
edata-la1 10×5 609 Best Cmax 729 636 634 888 780 614

RPD 17.9 4.3 4 37.3 24.6 0.8
Rank 4 3 2 6 5 1

edata-la2 10×5 655 Best Cmax 783 707 694 823 724 655*
RPD 17.8 7.6 5.8 22.7 10 0
Rank 5 3 2 6 4 1

edata-la3 10×5 550 Best Cmax 663 593 588 732 706 550*
RPD 18.6 7.5 6.7 28.4 24.8 0
Rank 4 3 2 6 5 1

edata-la4 10×5 568 Best Cmax 709 620 619 830 703 568*
RPD 22.1 8.8 8.6 37.5 21.2 0
Rank 5 3 2 6 4 1

edata-la5 10×5 503 Best Cmax 605 525 526 681 655 522
RPD 18.4 4.3 4.5 30.1 26.3 3.7
Rank 4 2 3 6 5 1

edata-la6 15×5 833 Best Cmax 976 864 861 1332 1229 833*
RPD 15.8 3.7 3.3 46.1 38.4 0
Rank 4 3 2 6 5 1

edata-la7 15×5 762 Best Cmax 960 818 819 1255 1136 785
RPD 23 7.1 7.2 48.9 39.4 3
Rank 4 2 3 6 5 1

edata-la8 15×5 845 Best Cmax 1001 880 868 1257 1129 852
RPD 16.9 4.1 2.7 39.2 28.8 0.8
Rank 4 3 2 6 5 1

rdata-la1 10×5 570 Best Cmax 723 607 609 665 789 621
RPD 23.7 6.3 6.6 15.4 32.2 8.6
Rank 5 1 2 4 6 3

rdata-la2 10×5 529 Best Cmax 680 573 567 633 770 554
RPD 25 8 6.9 17.9 37.1 4.6
Rank 5 3 2 4 6 1

rdata-la3 10×5 477 Best Cmax 621 518 512 590 708 514
RPD 26.2 8.2 7.1 21.2 39 7.5
Rank 5 3 1 4 6 2

rdata-la4 10×5 502 Best Cmax 646 542 538 623 720 551
RPD 25.1 7.7 6.9 21.5 35.7 9.3
Rank 5 2 1 4 6 3

rdata-la5 10×5 457 Best Cmax 577 484 480 568 667 489
RPD 23.2 5.7 4.9 21.7 37.4 6.8
Rank 5 2 1 4 6 3

rdata-la6 15×5 799 Best Cmax 974 832 821 1044 1252 857
RPD 19.7 4 2.7 26.6 44.2 7
Rank 4 2 1 5 6 3

rdata-la7 15×5 749 Best Cmax 917 779 776 1005 1123 802
RPD 20.2 3.9 3.5 29.2 40 6.8
Rank 4 2 1 5 6 3

rdata-la8 15×5 765 Best Cmax 938 793 790 1061 1203 823
RPD 20.3 3.6 3.2 32.4 44.5 7.3
Rank 4 2 1 5 6 3

vdata-la1 10×5 570 Best Cmax 728 613 609 671 815 607
RPD 24.3 7.3 6.6 16.3 35.4 6.3
Rank 5 3 2 4 6 1

vdata-la2 10×5 529 Best Cmax 675 565 564 560 770 574
RPD 24.3 6.6 6.4 5.7 37.1 8.2
Rank 5 3 2 1 6 4

vdata-la3 10×5 477 Best Cmax 627 515 520 574 706 515
RPD 27.2 7.7 8.6 18.5 38.7 7.7
Rank 4 1 2 3 5 1

vdata-la4 10×5 502 Best Cmax 652 534 531 641 706 534

(Contd...)

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

102 http://dx.doi.org/10.14500/aro.11609

B. Sensitivity Analysis
AOOA population consists of two critical parameters: the

number of hives (h) and bees (b). As the number of machines
and jobs vary in FJSSP, the population size of AOOA should
also vary to fit the search space. Therefore, it makes sense to
inspect the impact of different (h) and (b). For this reason,
two scales were used to fit all sizes of NxM where N is the
number of jobs and M is the number of machines. SSA and
MSA apiary were tested for each instance of benchmark data
with small, medium, and large-sized jobs and machines. This
can disclose whether SSA can find the best results, so there is
no need to increase computational complexity by increasing
population size and its consequent computations using MSA.
Table V illustrates the apiary scales of FJSSP. Each instance
was tested against all hive sizes with all bees’ numbers.
However, experiments manifest that increasing (h) and (b) to
be convenient for LSA yields increasing computational time
at a dramatic rate. Therefore, MSA was adopted to include
both medium and large-scale FJSS problem sizes.

By observing the results of all 34 instances illustrated in
Table VI, it is clear that the minimum makespan was found
using SSA for small factories with small-scale jobs and
machines of MK instances (i.e., MK1 and MK2). When the
size of factories increases, the minimum makespan was found
in MSA, MK3, MK5, MK7, MK10. In MK4 and MK6, there
was a slight difference in SSA and MSA results in both best
and average makespan where the best was found in SSA. In
MK8 and MK9 both SSA and MSA gave the same results.
Larger values than eight and seventy for h and b, respectively
failed to achieve closer results to the optimal solution but this
significantly increased the implementation time. Moreover,
most optimal solutions (i.e., minimum makespan) appeared
in the early iterations, and the ultimate solution appeared in
iteration 50.

It was evident in the results of edata, rdata, and vdata that
70% of best Cmax was found using MSA in edata (la1, la6,
la7, and la8), rdata (la1, la4, la6, la7, and la8), and vdata
(la2, la4, la5, la7, and la8). Edata la2, la3, and la4, SSA, and
MSA gave the same results, but the mean Cmax of MSA was
better than the Cmax of SSA. Therefore, edata la2, la3, and

la4 results were counted within the 17 instances of the best
Cmax of MSA (i.e. 70%). The best Cmax resulting from SSA
was 7 instances with 30% in edata (la5), rdata (la2, la3, and
la5), and vdata (la1, la3, and la6). The results proved that the
effect of increasing population size using MSA on enhancing
the minimum and mean makespan is bigger for MS factories
than for SS factories. The best values of (Best Cmax) and
(Mean Cmax) are identified in bold type.

C. Performance Analysis
In this section, the results and findings analysis will

be discussed. The discussion is divided into two parts:
statistical performance analysis of AOOA with the competing
algorithms and limitations.

The first part is divided into two subparts. The first subpart
investigates the relationship between the AOOA and the
five competing algorithms using a paired samples t-test.
We analyzed the data from samples of the six participant
algorithms, categorizing them based on (ELGA, EHGA,
IGA, MOGWO, HICSA, and AOOA) for MK instances
and (CS, CS-BNG, CS-ILF, CHA, MCA, and AOOA) for
Hurink dataset. Table VII shows the p-values for the MK01-
MK10, edata, rdata, and vdata instances of the AOOA vs.
the competing algorithms with degrees of freedom (df=8),
sample size (N=9), and significance level (α = 0.05). The
p-values ≥ (α) are highlighted in bold type.

The paired samples t-test yielded a t statistic and the
calculated p-value shown in Table VII, indicating an
extremely statistically significant difference between AOOA
and other algorithms at the α = 0.05 level. The low p-values
of AOOA (except for edata5, rdata2 - rdata5 of CS-BNG, and
CS-ILF) indicate strong evidence against the null hypothesis
proving that the results are significant.

The second subpart measures the AOOA performance
for the 34 instances compared to the competing algorithms
using group-based superiority in finding the best makespan.
AOOA outperformed ELGA, EHGA, IGA, and MOGWO in
10 MK instances with 100% superiority. On the other hand,
it outperformed HICSA in 9 MK instances (MK1-MK9) and
competed with HICSA on MK10. For edata, AOOA was
superior to all competing algorithms: CS, CS-BNG, CS-ILF,
CHA, and MCA with 100% superiority. In rdata and vdata,
AOOA was superior to CS and MCA in all 16 instances while
it was superior to CHA in all eight rdata instances and seven

TABLE IV
(Continued)

Instance Size LB Parameter CS CS-BNG CS-ILF CHA MCA AOOA
RPD 26 6.2 5.6 24.3 33.8 6.2
Rank 4 2 1 3 5 2

vdata-la5 10×5 457 Best Cmax 587 485 499 531 645 499
RPD 24.9 5.9 8.8 15 34.1 8.8
Rank 4 1 2 3 5 2

vdata-la6 15×5 799 Best Cmax 981 826 821 1042 1212 839
RPD 20.4 3.3 2.7 26.4 41.1 4.9
Rank 4 2 1 5 6 3

vdata-la7 15×5 749 Best Cmax 941 774 773 968 1130 796
RPD 22.7 3.3 3.2 25.5 40.6 6.1
Rank 4 2 1 5 6 3

vdata-la8 15×5 765 Best Cmax 952 779 787 908 1181 777
RPD 21.8 1.8 2.8 17.1 42.8 1.6
Rank 5 2 3 4 6 1

TABLE V
Apiary Parameter Values According to FJSSP Problem Size

Problem size Apiary Scale Number of Hives Number of Bees

Job Machines
Small 10 5 Small-scale

apiary (SSA)
3
4
5

30
40
50

10 6
Medium 15 4

15 5 Medium scale
apiary (MSA)

6
7
8

50
60
70

15 8
20 5

Large 10 15
20 10
20 15

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11609 103

TABLE VI
Best and Mean Makespan Results using SSA and MSA of MK1-MK10

Instance Apiary Scale Best Cmax Mean Cmax Instance Apiary Scale Best Cmax Mean Cmax

MK1 SSA 45 54.1 edata-la8 SSA 854 878.7
MSA 46 53.9 MSA 852 888.2

MK2 SSA 41 47.8 rdata-la1 SSA 632 678.9
MSA 43 46 MSA 621 667.2

MK3 SSA 257 274.3 rdata-la2 SSA 554 640
MSA 247 270.2 MSA 588 622.3

MK4 SSA 65 85.2 rdata-la3 SSA 514 592.4
MSA 70 81.1 MSA 525 573.9

MK5 SSA 199 213.4 rdata-la4 SSA 562 611.1
MSA 197 209.7 MSA 551 595.3

MK6 SSA 121 138.8 rdata-la5 SSA 489 549.1
MSA 125 135.5 MSA 517 548.2

MK7 SSA 203 228.6 rdata-la6 SSA 894 927.9
MSA 197 227.1 MSA 857 914.73

MK8 SSA 523 523 rdata-la7 SSA 814 863.9
MSA 523 523 MSA 802 852.8

MK9 SSA 424 454.5 rdata-la8 SSA 834 885.4
MSA 424 450.8 MSA 823 884.2

MK10 SSA 363 378.6 vdata-la1 SSA 607 685.2
MSA 357 381.6 MSA 644 677.4

edata-la1 SSA 637 672.9 vdata-la2 SSA 576 637.3
MSA 614 650 MSA 574 627.6

edata-la2 SSA 655 673.9 vdata-la3 SSA 515 573.7
MSA 655 663.2 MSA 539 565.1

edata-la3 SSA 550 566.3 vdata-la4 SSA 545 603.7
MSA 550 563.9 MSA 534 586.4

edata-la4 SSA 568 597.5 vdata-la5 SSA 503 557.8
MSA 568 587.8 MSA 499 538.2

edata-la5 SSA 522 560.3 vdata-la6 SSA 839 911.3
MSA 524 551.9 MSA 870 920.4

edata-la6 SSA 849 909.3 vdata-la7 SSA 810 871.4
MSA 833 892.4 MSA 796 866.7

edata-la7 SSA 795 844.7 vdata-la8 SSA 834 902.2
MSA 785 826.7 MSA 777 874.5

TABLE VII
Paired Samples t-test and P value for AOOA versus Other Algorithms of Instances MK01-10, EDATA01-08, RDATA01-08, AND VDATA01-08, DF=8,

N=9, Α=0.05

PI AOOA VS. t Sig. (2-tailed)
p-value

PI AOOA VS. t Sig. (2-tailed)
p-value

MK1 ELGA 26.407 4.54629E-09 MK6 ELGA 21.964 1.94932E-08
EHGA 18.141 8.75736E-08 EHGA 55.763 1.18696E-11
IGA 15.656 2.76462E-07 IGA 7.069 0.00011
MOGWO 20.346 3.56036E-08 MOGWO 26.382 4.58033E-09
HICSA 26.328 4.65453E-09 HICSA 52.178 2.01724E-11

MK2 ELGA 20.084 3.94225E-08 MK7 ELGA 35.207 4.63615E-10
EHGA 17.605 1.10756E-07 EHGA 17.519 1.15079E-07
IGA 9.197 1.57994E-05 IGA 18.973 6.16255E-08
MOGWO 10.670 5.22089E-06 MOGWO 14.493 5.02867E-07
HICSA 27.086 3.71812E-09 HICSA 69.046 2.15518E-12

MK3 ELGA 27.721 3.09392E-09 MK8 ELGA 149.000 4.60432E-15
EHGA 28.156 2.73463E-09 EHGA 229.399 1.45963E-16
IGA 20.616 3.20934E-08 IGA 188.259 7.09268E-16
MOGWO 23.233 1.25126E-08 MOGWO 155.568 3.26094E-15
HICSA 46.764 4.83285E-11 HICSA 19.228 5.54874E-08

MK4 ELGA 66.287 2.98493E-12 MK9 ELGA 70.795 1.76492E-12
EHGA 31.825 1.03469E-09 EHGA 39.941 1.69834E-10
IGA 33.942 6.20127E-10 IGA 40.510 1.51749E-10

(Contd...)

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

104 http://dx.doi.org/10.14500/aro.11609

TABLE VII
(Continued)

PI AOOA VS. t Sig. (2-tailed)
p-value

PI AOOA VS. t Sig. (2-tailed)
p-value

MOGWO 22.277 1.74305E-08 MOGWO 40.827 1.42600E-10
HICSA 92.655 2.05504E-13 HICSA 16.397 1.92877E-07

MK5 ELGA 83.326 4.79935E-13 MK10 ELGA 33.070 7.62695E-10
EHGA 45.667 5.84033E-11 EHGA 36.765 3.28452E-10
IGA 59.713 6.87372E-12 IGA 21.805 2.06362E-08
MOGWO 50.579 2.58547E-11 MOGWO 43.756 8.21037E-11
HICSA 153.139 3.69824E-15 HICSA -9.330 1.42094E-05

edata-la1 CS 23.465 1.15698E-08 edata-la5 CS 13.496 8.71455E-07
CS-BNG 1.982 0.08280 CS-BNG 1.197 0.26552
CS-ILF 2.366 0.04555 CS-ILF 0.965 0.36276
CHA 38.736 2.16744E-10 CHA 37.789 2.63954E-10
MCA 18.805 6.60635E-08 MCA 25.873 5.34432E-09

edata-la2 CS 73.041 1.37505E-12 edata-la6 CS 39.804 1.74550E-10
CS-BNG 39.179 1.98018E-10 CS-BNG 11.994 2.15235E-06
CS-ILF 21.290 2.49111E-08 CS-ILF 6.337 0.00022
CHA 97.054 1.41831E-13 CHA 133.905 1.08180E-14
MCA 74.046 1.23295E-12 MCA 132.679 1.16434E-14

edata-la3 CS 131.109 1.28065E-14 edata-la7 CS 64.626 3.65552E-12
CS-BNG 23.170 1.27823E-08 CS-BNG 6.818 0.00014
CS-ILF 36.156 3.75183E-10 CS-ILF 7.230 8.98005E-05
CHA 231.587 1.35290E-16 CHA 95.006 1.68205E-13
MCA 130.255 1.34932E-14 MCA 81.851 5.53566E-13

edata-la4 CS 44.260 7.49525E-11 edata-la8 CS 57.522 9.26340E-12
CS-BNG 20.171 3.81019E-08 CS-BNG 14.661 4.60020E-07
CS-ILF 14.648 4.63250E-07 CS-ILF 6.058 0.00030
CHA 54.677 1.38874E-11 CHA 137.617 8.69330E-15
MCA 45.279 6.25117E-11 MCA 104.127 8.08257E-14

rdata-la1 CS 46.593 4.97624E-11 rdata-la5 CS 8.074 4.08754E-05
CS-BNG -3.386 0.00956 CS-BNG −1.584 0.15175
CS-ILF -3.146 0.01369 CS-ILF −1.460 0.18245
CHA 4.441 0.00217 CHA 7.829 5.09974E-05
MCA 31.532 1.11355E-09 MCA 20.961 2.81675E-08

rdata-la2 CS 14.019 6.50345E-07 rdata-la6 CS 16.055 2.27228E-07
CS-BNG 1.609 0.14633 CS-BNG 4.677 0.00159
CS-ILF 0.192 0.85243 CS-ILF 4.191 0.00303
CHA 6.378 0.00021 CHA 9.994 8.52846E-06
MCA 25.276 6.42756E-09 MCA 4.314 0.00257

rdata-la3 CS 9.365 1.38234E-05 rdata-la7 CS 25.866 5.35586E-09
CS-BNG −0.487 0.63925 CS-BNG −7.338 8.08969E-05
CS-ILF −1.953 0.08656 CS-ILF −11.057 3.99117E-06
CHA 6.789 0.00014 CHA 61.686 5.30169E-12
MCA 16.631 1.72711E-07 MCA 85.750 3.81619E-13

rdata-la4 CS 11.872 2.32641E-06 rdata-la8 CS 34.023 6.08574E-10
CS-BNG −0.527 0.61264 CS-BNG −7.780 5.33524E-05
CS-ILF −0.192 0.85272 CS-ILF −14.344 5.44727E-07
CHA 8.752 2.27471E-05 CHA 57.098 9.82709E-12
MCA 17.356 1.23754E-07 MCA 112.547 4.34061E-14

vdata-la1 CS 17.314 1.26166E-07 vdata-la5 CS 32.655 8.43151E-10
CS-BNG 4.825 0.00131 CS-BNG 4.206 0.00297
CS-ILF 4.851 0.00127 CS-ILF 5.145 0.00088
CHA 10.120 7.76489E-06 CHA 7.075 0.00010
MCA 7.542 6.66079E-05 MCA 8.051 4.17167E-05

vdata-la2 CS 17.408 1.20921E-07 vdata-la6 CS 11.565 2.83930E-06
CS-BNG 4.513 0.00197 CS-BNG 4.736 0.00147
CS-ILF 4.529 0.00193 CS-ILF 4.664 0.00161
CHA 4.489 0.00203 CHA 8.006 4.34181E-05
MCA 7.665 5.93336E-05 MCA 4.348 0.00245

vdata-la3 CS 14.976 3.90236E-07 vdata-la7 CS 17.341 1.24636E-07
CS-BNG 5.267 0.00076 CS-BNG 4.316 0.00256

(Contd...)

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11609 105

TABLE VII
(Continued)

PI AOOA VS. t Sig. (2-tailed)
p-value

PI AOOA VS. t Sig. (2-tailed)
p-value

CS-ILF 5.827 0.00039 CS-ILF 4.138 0.00326
CHA 8.835 2.12313E-05 CHA 14.593 4.76762E-07
MCA 8.721 2.33440E-05 MCA 5.555 0.00054

vdata-la4 CS 20.845 2.94166E-08 vdata-la8 CS 11.476 3.01076E-06
CS-BNG 5.574 0.00053 CS-BNG 4.787 0.00138
CS-ILF 5.513 0.00057 CS-ILF 5.662 0.00047
CHA 18.180 8.61057E-08 CHA 14.528 4.93665E-07
MCA 8.517 2.77472E-05 MCA 5.558 0.00054

vdata instances (la1, la3-la8). AOOA outperformed CS-BNG
in two rdata instances (la2, la3) while overcame CS-ILF
algorithm in la2. However, AOOA overcame CS-BNG in
two vdata instances (la1, la8) and was equal to it in rank in
la3 and la4, while overcame CS-ILF in three vdata (la1, la3,
and la8) and was equal to it in rank in la2. Finally, it was
found that AOOA achieved better results over CS, CS-BNG,
CS-ILF, CHA, and MCA in solving 24, 12, 12, 23, and 24
FJSSP instances, respectively. Table VIII shows the AOOA
superiority over competing algorithms for edata, rdata, and
vdata datasets.

We believe that there are several factors behind the
superiority of AOOA which can be summarized in
(i) The concept of multiple populations generating a large
diverse population, (ii) good exploration and exploitation
mechanisms, (iii) two sources to generate new solutions
represented in queen fertilization and worker lifecycle, and
(iv) drone exchange, fading out, and swarming increase
diversity and prevent stagnation.

Although AOOA presented a superior performance, it still
has some limitations. AOOA used classical 34 instances of
FJSS benchmark datasets while other benchmark datasets can
be used such as (Kacem, Hammadi and Borne, 2002; Fattahi,
Saidi Mehrabad and Jolai, 2007), etc. More objective functions
and constraints can be considered such as maximizing
the profit by resource utilization or machine performance,
minimizing transportation time, process time, job delay, and
energy consumption. Furthermore, enhancement can be made
to AOOA so that better results are obtained.

VI. Conclusion
This paper introduced a solution to one of the NP-hard
real-world problems, namely the FJSSP using AOOA, a

TABLE VIII
Group-based Superiority of AOOA

Dataset Number of Instances Where AOOA is Better

ELGA EHGA IGA MOGWO HICSA
MK1-10 8 8 8 8 7

CS CS-BNG CS-ILF CHA MCA
edata 8 8 8 8 8
rdata 8 2 1 8 8
vdata 8 2 3 7 8
Total instances 24 12 12 23 24

new nature-inspired metaheuristic optimization algorithm.
Its main structure was based on the organizational behavior
of honey bees inside the apiary. Benchmark datasets of
thirty-four instances of various sizes (small, medium, and
large) scales were employed in the experiments to find the
minimum makespan (Cmax). The results were compared to ten
of the state-of-the-art algorithms, five for BRdata and five
for Hurink edata, rdata, and vdata. They were statistically
assessed using the paired samples t-test and p-value, RPD,
and group-based superiority statistical analysis to prove the
AOOA performance. The p-values of AOOA at α = 0.05
level (except for MK09 and edata02) indicate strong
evidence against the null hypothesis proving that the results
are significant. AOOA outperformed ELGA, EHGA, IGA,
and MOGWO in solving all 10 MK instances and HICSA in
solving 9 MK instances. Moreover, AOOA overcame CS, CS-
BNG, CS-ILF, CHA, and MCA in solving 24, 12, 12, 23, and
24 instances of edata, rdata, and vdata, respectively. In many
instances, AOOA achieved LB or near-optimal solutions to
compete with other algorithms. The research demonstrated
that the new nature-inspired algorithm can solve NP-hard
problems effectively and efficiently. The overall findings
were promising in comparison with some metaheuristic
optimization algorithms.

References
Al-Obaidi, A.T.S., Abdullah, H.S., and Ahmed, Z.O., 2017. Camel herds
algorithm: A new swarm intelligent algorithm to solve optimization problems.
International Journal on Perceptive and Cognitive Computing, 3(1), pp.6–10.

Al-Obaidi, A.T.S., Abdullah, H.S., and Ahmed, Z.O., 2018. Meerkat clan
algorithm: A new swarm intelligence algorithm. Indonesian Journal of Electrical
Engineering and Computer Science, 10(1), pp.354-360.

Al-Obaidi, A.T.S., and Hussein, S.A., 2016. Two improved Cuckoo search
algorithms for solving the flexible job-shop scheduling problem. International
Journal on Perceptive and Cognitive Computing, 2(2), pp.25-31.

Al-Sharqi, M.A., Al-Obaidi, A.T.S., and Al-mamory, S.O., 2024. Apiary
organizational-based optimization algorithm: A new nature-inspired
metaheuristic algorithm. International Journal of Intelligent Engineering and
Systems, 17(3), pp.783-801.

Alzaqebah, M., Jawarneh, S., Alwohaibi, M., Alsmadi, M.K., Almarashdeh, I.,
and Mohammad, R.M.A., 2022. Hybrid brain storm optimization algorithm and
late acceptance hill climbing to solve the flexible job-shop scheduling problem.
Journal of King Saud University -Computer and Information Sciences, 34(6),
pp.2926-2937.

Amirteimoori, A., Mahdavi, I., Solimanpur, M., Ali, S.S., and Tirkolaee, E.B.,

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

106 http://dx.doi.org/10.14500/aro.11609

2022. A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling
with transportation. Computers and Industrial Engineering, 173, p.108672.

Bissoli, D.C., Altoe, W.A.S., Mauri, G.R., and Amaral, A.R.S., 2018. A Simulated
Annealing Metaheuristic for the Bi-objective Flexible Job Shop Scheduling
Problem. In: 2018 International Conference on Research in Intelligent and
Computing in Engineering (RICE). pp.1-6.

Brandimarte, P., 1993. Routing and scheduling in a flexible job shop by Tabu
search. Annals of Operations Research, 41(3), pp.157-183.

Dai, M., Tang, D., Giret, A., and Salido, M.A., 2019. Multi-objective optimization
for energy-efficient flexible job shop scheduling problem with transportation
constraints. Robotics and Computer-Integrated Manufacturing, 59, pp.143-157.

Fattahi, P., Saidi Mehrabad, M., and Jolai, F., 2007. Mathematical modeling
and heuristic approaches to flexible job shop scheduling problems. Journal of
Intelligent Manufacturing, 18(3), pp.331-342.

Hurink, J., Jurisch, B., and Thole, M., 1994. Tabu search for the job-shop
scheduling problem with multi-purpose machines. OR Spektrum, 15(4),
pp.205-215.

Jiang, M., Yu, H., and Chen, J., 2023. Improved self-learning genetic algorithm
for solving flexible job shop scheduling. Mathematics, 11(22), p.4700.

Kacem, I., Hammadi, S., and Borne, P., 2002. Approach by localization and
multiobjective evolutionary optimization for flexible job-shop scheduling
problems. IEEE Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, 32(1), pp.1-13.

Li, Y., Yang, Z., Wang, L., Tang, H., Sun, L., and Guo, S., 2022. A hybrid
imperialist competitive algorithm for energy-efficient flexible job shop scheduling
problem with variable-size sublots. Computers and Industrial Engineering,
172, p.108641.

Lu, C., Gao, L., Pan, Q., Li, X., and Zheng, J., 2019. A multi-objective cellular
grey wolf optimizer for hybrid flowshop scheduling problem considering noise
pollution. Applied Soft Computing Journal, 75, pp.728-749.

Luo, S., Zhang, L., and Fan, Y., 2019a. Energy-efficient scheduling for multi-
objective flexible job shops with variable processing speeds by grey wolf
optimization. Journal of Cleaner Production, 234, pp.1365-1384.

Luo, S., Zhang, L., and Fan, Y., 2019b. Energy-efficient scheduling for multi-
objective flexible job shops with variable processing speeds by grey wolf
optimization. Journal of Cleaner Production, 234, pp.1365-1384.

Meng, L., Duan, P., Gao, K., Zhang, B., Zou, W., Han, Y., and Zhang, C., 2024.
MIP modeling of energy-conscious FJSP and its extended problems: From
simplicity to complexity. Expert Systems with Applications, 241, p.122594.

Piotr Jedrzejowicza, I.W., 2022. Implementation of the Mushroom Picking
Framework for Solving Flexible Job Shop Scheduling Problems in Parallel.
In: 26th International Conference on Knowledge-Based and Intelligent
Information and Engineering 26th International Conference on Knowledge-
Based and Intelligent Information and Engineering Systems (KES 2022).
pp.292-298.

Rajwar, K., Deep, K., and Das, S., 2023. An exhaustive review of the
metaheuristic algorithms for search and optimization: Taxonomy, applications,
and open challenges. Artificial Intelligence Review, 56(11), pp.13187-13257.

Sadiq Al-Obaidi, A.T., Abdullah, H.S., and Ahmed, Z.O., 2018. Solving flexible
job shop scheduling problem using meerkat clan algorithm. Iraqi Journal of
Science, 59(2A), pp.754-761.

Şahman, M.A., 2021. A discrete spotted hyena optimizer for solving distributed
job shop scheduling problems. Applied Soft Computing, 106, p.107349.

Song, L., Liu, C., Shi, H., and Zhu, J., 2022. An improved immune genetic
algorithm for solving the flexible job shop scheduling problem with batch
processing. Wireless Communications and Mobile Computing, 2022, p.2856056.

Wang, Y., Xia, T., Xu, Y., Ding, Y., Zheng, M., Pan, E., and Xi, L., 2024. Joint
optimization of flexible job shop scheduling and preventive maintenance under
high-frequency production switching. International Journal of Production
Economics, 269, p.109163.

Wu, L., and Cai, H., 2021. Energy-efficient adaptive sensing scheduling in
wireless sensor networks using Fibonacci tree optimization algorithm. Sensors
(Basel), 21(15), p.55002.

Xie, J., Gao, L., Peng, K., Li, X., and Li, H., 2019. Review on flexible job shop
scheduling. IET Collaborative Intelligent Manufacturing, 1, p.67-77.

Xie, N., and Chen, N., 2018. Flexible job shop scheduling problem with interval
grey processing time. Applied Soft Computing Journal, 70, pp.513-524.

Zeidabadi, F.A., and Dehghani, M., 2022. POA: Puzzle optimization algorithm.
International Journal of Intelligent Engineering and Systems, 15(1), pp.273-281.

Zhang, C., Tan, J., Peng, K., Gao, L., Shen, W., and Lian, K., 2021. A discrete
whale swarm algorithm for hybrid flow-shop scheduling problem with limited
buffers. Robotics and Computer-Integrated Manufacturing, 68, p.102081.

Zhang, G., Hu, Y., Sun, J., and Zhang, W., 2020. An improved genetic algorithm
for the flexible job shop scheduling problem with multiple time constraints.
Swarm and Evolutionary Computation, 54, p.100664.

Zhu, N., Zhao, F., Wang, L., Ding, R., Xu, T., and Jonrinaldi, 2022. A discrete
learning fruit fly algorithm based on knowledge for the distributed no-wait
flow shop scheduling with due windows. Expert Systems with Applications,
198, p.116921.

